ாாคレบรロN

NEWS RELEASE

Mawson's Subsidiary SXG Drills Highest Grades at Apollo

 3 new vein sets extend mineralisation a further 150 m east at Sunday Creek Mineralisation also extended a further 150 m deeper at ApolloVancouver, Canada - Mawson Gold Limited ("Mawson" or the "Company") (TSXV:MAW) (Frankfurt:MXR) (PINKSHEETS: MWSNF) announces Southern Cross Gold Ltd. ("Southern Cross Gold" or "SXG") has released one drillhole SDDSC108A from the Apollo area at its 100\%-owned Sunday Creek Project in Victoria, Australia (Figures 1-5).

Highlights:

- SDDSC108A drilled eight high-grade vein sets at Apollo Deep over a 445 m down-hole interval and delivered on multiple levels (Figure 4):
o The highest grades of gold found at Apollo to date, including $\mathbf{0 . 2} \mathbf{~ m}$ @ $\mathbf{5 7 6} \mathbf{~ g / t ~ A u ; ~}$
o Three new vein sets, extending mineralisation $\mathbf{1 5 0} \mathbf{~ m}$ east; and
o Extensions of known mineralisation $\mathbf{1 5 0} \mathbf{m}$ below prior drilling from SDDSC066.
- SDDSC108A hosts seven intervals > $\mathbf{1 5} \mathbf{~ g / t ~ A u ~ (u p ~ t o ~} \mathbf{5 7 6} \mathbf{~ g} / \mathbf{t ~ A u}$) and six intervals of >5\% Sb (up to $\mathbf{1 5 . 1} \% \mathrm{Sb}$). Selected highlights include:

Three new vein sets that extend mineralisation 150 m east, including:
o 11.0 m @ $5.0 \mathbf{g} / \mathbf{t ~ A u E q ~ (~} 1.9 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 2.0 \% \mathrm{Sb}$) from 354.1 m , including:

- $\mathbf{0 . 8} \mathbf{~ m}$ @ $\mathbf{2 1 . 0} \mathbf{~ g} / \mathbf{t}$ AuEq ($12.0 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 5.7 \% \mathrm{Sb}$) from 357.6 m
- 1.0 m @ $\mathbf{1 5 . 0} \mathbf{~ g / t}$ AuEq ($1.0 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 8.9 \% \mathrm{Sb}$) from 359.5 m
- $\mathbf{1 . 4} \mathbf{~ m}$ @ $8.8 \mathbf{g} / \mathbf{t}$ AuEq ($3.3 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 3.5 \% \mathrm{Sb}$) from 363.0 m

Down-dip extension of mineralisation $150 \mathbf{m}$ below Apollo, including:
o 7.8 m @ $2.6 \mathbf{g} / \mathbf{t}$ AuEq ($1.0 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 1.0 \% \mathrm{Sb}$) from 636.2 m , including:

- 1.1 m @ 5.9 g/t AuEq ($1.7 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 2.6$ \% Sb) from 636.9 m
o $9.8 \mathbf{~ m} @ 3.9 \mathbf{g} / \mathbf{t}$ AuEq ($1.8 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 1.3 \% \mathrm{Sb}$) from 655.6 m , including:
- $1.2 \mathbf{~ m}$ @ $\mathbf{1 9 . 4} \mathbf{~ g} / \mathbf{t}$ AuEq ($8.6 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 6.8 \% \mathrm{Sb}$) from 657.8 m
o $\quad \mathbf{0 . 2} \mathbf{~ m}$ @ $\mathbf{5 7 6 . 1} \mathbf{~ g / t} \mathbf{~ A u E q ~ (5 7 6 . 0 ~ g / t ~ A u , ~} 0.1 \% \mathrm{Sb}$) from 762.9 m
o $\mathbf{1 . 1} \mathbf{~ m}$ @ $\mathbf{1 7 . 1} \mathbf{~ g / t ~ A u E q ~ (~} 16.9 \mathrm{~g} / \mathrm{t}$ Au, 0.1 \% Sb) from 797.9 m
- Eight drillholes at Sunday Creek at are being processed and analysed, with three holes in progress (Figures 1 and 2).
- Mawson owns $93,750,000$ shares of SXG (51\%), valuing its stake at A $\$ 120.0$ million (C $\$ 108.9$ million) based on SXG's closing price on February 26, 2024 AEST.

Michael Hudson, Mawson Interim CEO and Executive Chairman, states: "Drill hole SDDSC108A delivers on multiple levels, increasing both volume and grade at Sunday Creek in multiple dimensions. The hole demonstrates the system at Sunday Creek continues to the east and to depth, and that it is predictable and targetable.
"Firstly, three new veins were discovered in the upper parts of the hole and these extend mineralisation another 150 m further east towards the nine km of regional strike that remains open for further discovery. These add to the 42 vein sets already defined at Sunday Creek for a current total of 45 vein sets.
"Secondly, SDDSC108A extends mineralisation 150 m deeper than previous drilling at Apollo Deep proving the continuity and persistency of mineralisation in the step-out areas.
"And thirdly, the hole drilled the highest grades of gold found at Apollo to date, including 0.2 m@ $576 \mathrm{~g} / \mathrm{t}$ Au. It continues to validate the opportunity to find even higher grades depth at Apollo Deep, as we have found at Rising Sun 400 m to the west. This high-grade intercept is interpreted to be located 150 m downdip from the previously highest-grade vein set drilled at Apollo in SDDSCO66 (1.0 m @ $224 \mathrm{~g} / \mathrm{t}$ AuEq) (Figure 4). This demonstrates the exciting opportunity to further define coherent and extremely high-grade bodies at Sunday Creek with closer spaced drilling.
"Additionally, we continue to be pleased with the high grades of antimony intersected. Antimony is an important potential by-product with its own economic and strategic value.
"With four drill rigs operating and assays from 11 holes awaited, there always remains imminent news flow coming from Sunday Creek, which continues to produce some of the most exciting gold exploration results globally."

Drill Hole Discussion

SDDSC108A was drilled from the east to west, 150 m down-dip from SDDSC066 (released 1st June, 2023) and tested multiple vein sets. SDDSC108A contains the highest-grade intercept drilled at Apollo to date ($\mathbf{0 . 2} \mathbf{~ m}$ @ $576.0 \mathbf{~ g} / \mathbf{t ~ A u}$). This high-grade intercept is interpreted to be located 150 m down-dip from the highest-grade vein set drilled in SDDSC066 ($\mathbf{1 . 0} \mathbf{~ m}$ @ $\mathbf{2 2 4 . 3} \mathbf{~ g} / \mathbf{t ~ A u E q}$) (Figure 3). This further demonstrates the well understood geological opportunity to find extremely high grade "Cinderella Zones", that form at depth in the Victorian epizonal systems and demonstrates the opportunity to define extremely high-grade bodies at Sunday Creek.

SDDSC108A hole traversed eight mineralised vein sets and contained seven intervals > $\mathbf{1 5} \mathbf{~ g / t}$ Au (up to $576 \mathbf{g} / \mathbf{t ~ A u}$) and six intervals of > $\mathbf{5}$ \% Sb (up to $\mathbf{1 5 . 1}$ \% Sb).

The three new veins sets discovered extend mineralisation 150 m east. These new veins sets are interpreted to correlate with mineralisation previously identified by (Figure 3):

- Surface trenching located 260 m up dip, that included Trench 1: $14.0 \mathrm{~m} @ 12.0 \mathrm{~g} / \mathrm{t}$ AuEq ($11.5 \mathrm{~g} / \mathrm{t}$ Au and $0.3 \% \mathrm{Sb}$) including $8.0 \mathrm{~m} @ 20.2 \mathrm{~g} / \mathrm{t} \mathrm{AuEq} \mathrm{(} 19.6 \mathrm{~g} / \mathrm{t}$ Au and $0.4 \% \mathrm{Sb}$) and Trench 2: $2 \mathrm{~m} @$ $5.2 \mathrm{~g} / \mathrm{t} \mathrm{AuEq}(4.9 \mathrm{~g} / \mathrm{t}$ Au and $0.2 \% \mathrm{Sb}$); and
- Drilling, where a very shallow drill hole, SDDSC063 intersected $1.5 \mathrm{~m} @ 6.6 \mathrm{~g} / \mathrm{t}$ AuEq ($5.0 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 1.0$ \% Sb) from 25.2 m depth.
Highlights from the three new vein discoveries in SDDSC108A include:
- 11.0 m @ 5.0 g/t AuEq ($1.9 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 2.0 \% \mathrm{Sb}$) from 354.1 m , including:
o $\mathbf{0 . 8} \mathbf{~ m}$ @ $\mathbf{2 1 . 0} \mathbf{~ g} / \mathbf{t}$ AuEq ($12.0 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 5.7 \% \mathrm{Sb}$) from 357.6 m
o $1.0 \mathbf{~ m}$ @ $\mathbf{1 5 . 0} \mathbf{~ g / t}$ AuEq ($1.0 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 8.9 \% \mathrm{Sb}$) from 359.5 m
o $1.4 \mathbf{~ m}$ @ $8.8 \mathbf{g} / \mathbf{t}$ AuEq ($3.3 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 3.5 \% \mathrm{Sb}$) from 363.0 m
- $2.4 \mathbf{~ m} @ 6.1 \mathbf{g} / \mathbf{t}$ AuEq ($5.6 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.3 \% \mathrm{Sb}$) from 382.8 m , including:
o $\mathbf{0 . 4} \mathbf{~ m} @ 13.0 \mathbf{g} / \mathbf{t}$ AuEq ($12.6 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.2 \% \mathrm{Sb}$) from 383.2 m
o $\mathbf{0 . 6} \mathbf{~ m}$ @ $\mathbf{1 0 . 7} \mathbf{~ g / t} \mathbf{t} \mathbf{A u E q}(10.2 \mathrm{~g} / \mathrm{t} \mathrm{Au}, \mathbf{0 . 3 \%} \mathrm{Sb}$) from 384.6 m
- $\mathbf{0 . 3} \mathbf{~ m}$ @ $\mathbf{2 3 . 7} \mathbf{~ g / t ~ A u E q ~ (~} 19.6 \mathrm{~g} / \mathrm{t}$ Au, 2.6\% Sb) from 419.0 m
- $\mathbf{0 . 3} \mathbf{~ m}$ @ $\mathbf{4 8 . 8} \mathbf{~ g} / \mathbf{t}$ AuEq ($48.8 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.0 \% \mathrm{Sb}$) from 438.4 m
- $\mathbf{9 . 8} \mathbf{~ m}$ @ $\mathbf{1 . 8} \mathbf{~ g / t ~ A u E q ~ (~} 1.6 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.1 \% \mathrm{Sb}$) from 440.7 m

Highlights from the deep extension of Apollo Deep in SDDSC108A include:

- $7.8 \mathbf{~ m}$ @ $2.6 \mathrm{~g} / \mathbf{t}$ AuEq ($1.0 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 1.0 \% \mathrm{Sb}$) from 636.2 m , including:
o $1.1 \mathbf{m}$ @ $5.9 \mathbf{g} / \mathbf{t}$ AuEq ($1.7 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 2.6 \% \mathrm{Sb}$) from 636.9 m
- $9.8 \mathbf{~ m} @ 3.9 \mathbf{~ g} / \mathbf{t}$ AuEq ($1.8 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 1.3 \% \mathrm{Sb}$) from 655.6 m , including:
o $1.2 \mathbf{~ m} @ 19.4 \mathbf{~ g} / \mathbf{t}$ AuEq ($8.6 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 6.8 \% \mathrm{Sb}$) from 657.8 m
- 5.5 m @ $1.2 \mathbf{g} / \mathbf{t}$ AuEq ($0.7 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.3 \% \mathrm{Sb}$) from 694.9 m
- $5.2 \mathbf{~ m} @ 3.2 \mathbf{g} / \mathbf{t}$ AuEq ($2.3 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.6 \% \mathrm{Sb}$) from 707.6 m , including:
o $\mathbf{0 . 2} \mathbf{~ m}$ @ $\mathbf{4 4 . 8} \mathbf{~ g} / \mathbf{t} \mathbf{A u E q}(33.9 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 6.9 \% \mathrm{Sb}$) from 707.8 m
- 0.2 m @ $\mathbf{5 7 6 . 1} \mathbf{~ g / t ~ A u E q ~ (~} 576.0 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.1 \% \mathrm{Sb}$) from 762.9 m
- 1.1 m @ $\mathbf{1 7 . 1} \mathbf{~ g / t ~ A u E q ~ (~} 16.9 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.1 \% \mathrm{Sb}$) from 797.9 m

Pending Results and Update

Eight holes (SDDSC107, 110-112, 112W1, 113, 114, 115A) are currently being processed and analysed, with three holes (SDDSC116, 117, 118) in progress (Figures 1 and 2).

Further Information

Further discussion and analysis of the Sunday Creek project by Southern Cross Gold is available on the SXG website at www. southerncrossgold. com.au.
No upper gold grade cut is applied in the averaging and intervals are reported as drill thickness. During future Mineral Resource studies, the requirement for assay top cutting will be assessed.

Figures 1-4 show project location, plan, longitudinal and cross-sectional views of drill results reported here and Tables 1-3 provide collar and assay data. The true thickness of the mineralised intervals reported are interpreted to be approximately 60% to 70% of the sampled thickness for other reported holes. Lower grades were cut at $1.0 \mathrm{~g} / \mathrm{t}$ Au lower cutoff over a maximum width of 2 m with higher grades cut at $5.0 \mathrm{~g} / \mathrm{t}$ Au lower cutoff over a maximum of 1 m width.

Technical Background and Qualified Person

The Qualified Person, Michael Hudson, Executive Chairman and a director of Mawson Gold, and a Fellow of the Australasian Institute of Mining and Metallurgy, has reviewed, verified and approved the technical contents of this release.
Analytical samples are transported to the Bendigo facility of On Site Laboratory Services ("On Site") which operates under both an ISO 9001 and NATA quality systems. Samples were prepared and analyzed for gold using the fire assay technique (PE01S method; 25 gram charge), followed by measuring the gold in solution with flame AAS equipment. Samples for multi-element analysis (BM011 and over-range methods as required) use aqua regia digestion and ICP-MS analysis. The QAVC program of Southern Cross Gold consists of the systematic insertion of certified standards of known gold content, blanks within interpreted mineralized rock and quarter core duplicates. In addition, On Site inserts blanks and standards into the analytical process.

MAW considers that both gold and antimony that are included in the gold equivalent calculation ("AuEq") have reasonable potential to be recovered at Sunday Creek, given current geochemical understanding, historic production statistics and geologically analogous mining operations. Historically, ore from Sunday Creek was treated onsite or shipped to the Costerfield mine, located 54 km to the northwest of the project, for processing during WW1. The Costerfield mine corridor, now owned by Mandalay Resources Ltd contains two million ounces of equivalent gold (Mandalay Q3 2021 Results), and in 2020 was the sixth highest-grade global underground mine and a top 5 global producer of antimony.
SXG considers that it is appropriate to adopt the same gold equivalent variables as Mandalay Resources Ltd in its Mandalay Technical Report, 2022 dated 25 March 2022. The gold equivalence formula used by Mandalay Resources was calculated using recoveries achieved at the Costerfield Property Brunswick Processing Plant during 2020, using a gold price of US\$1,700 per ounce, an antimony price of US\$8,500 per tonne and 2021 total year metal recoveries of 93% for gold and 95% for antimony, and is as follows:

$$
A u E q=A u(g / t)+1.58 \times S b(\%) .
$$

Based on the latest Costerfield calculation and given the similar geological styles and historic toll treatment of Sunday Creek mineralization at Costerfield, SXG considers that a $A u E q=A u(g / t)+\mathbf{1 . 5 8} \times S b(\%)$ is appropriate to use for the initial exploration targeting of gold-antimony mineralization at Sunday Creek.

About Mawson Gold Limited (TSXV:MAW, FRANKFURT:MXR, OTCPI NK:MWSNF)

Mawson Gold Limited has distinguished itself as a leading Nordic exploration company. Over the last decades, the team behind Mawson has forged a long and successful record of discovering, financing, and advancing mineral projects in the Nordics and Australia. Mawson holds the Skellefteå North gold discovery and a portfolio of historic uranium resources in Sweden. Mawson also holds 51% of Southern Cross Gold Ltd. (ASX:SXG) which owns or controls three high-grade, historic epizonal goldfields covering 470 km^{2} in Victoria, Australia, including the exciting Sunday Creek Au-Sb discovery.

About Southern Cross Gold Ltd (ASX:SXG)

Southern Cross Gold holds the 100\%-owned Sunday Creek project in Victoria and Mt Isa project in Queensland, the Redcastle and Whroo joint ventures in Victoria, Australia, and a strategic 10\% holding in ASX-listed Nagambie Resources Limited (ASX:NAG) which grants SXG a Right of First Refusal over a 3,300 square kilometer tenement package held by NAG in Victoria.

On behalf of the Board,

"Michael Hudson"

Michael Hudson, Interim CEO and Executive Chairman

Further I nformation www.mawsongold.com

1305-1090 West Georgia St., Vancouver, BC, V6E 3V7
Mariana Bermudez (Canada), Corporate Secretary +1 (604) 6859316 info@mawsongold.com

Forward-Looking Statement

This news release contains forward-looking statements or forward-looking information within the meaning of applicable securities laws (collectively, "forward-looking statements"). All statements herein, other than statements of historical fact, are forward-looking statements. Although Mawson believes that such statements are reasonable, it can give no assurance that such expectations will prove to be correct. Forward-looking statements are typically identified by words such as: believe, expect, anticipate, intend, estimate, postulate, and similar expressions, or are those, which, by their nature, refer to future events. Mawson cautions investors that any forward-looking statements are not guarantees of future results or performance, and that actual results may differ materially from those in forward-looking statements as a result of various factors, including, Mawson's expectations regarding its ownership interest in Southern Cross Gold, capital and other costs varying significantly from estimates, changes in world metal markets, changes in equity markets, the potential impact of epidemics, pandemics or other public health crises, including COVID-19, on the Company's business, risks related to negative publicity with respect to the Company or the mining industry in general; exploration potential being conceptual in nature, there being insufficient exploration to define a mineral resource on the Australian-projects owned by SXG, and uncertainty if further exploration will result in the determination of a mineral resource; planned drill programs and results varying from expectations, delays in obtaining results, equipment failure, unexpected geological conditions, local community relations, dealings with non-governmental organizations, delays in operations due to permit grants, environmental and safety risks, and other risks and uncertainties disclosed under the heading "Risk Factors" in Mawson's most recent Annual Information Form filed on SEDAR. Any forward-looking statement speaks only as of the date on which it is made and, except as may be required by applicable securities laws, Mawson disclaims any intent or obligation to update any forward-looking statement, whether as a result of new information, future events or results or otherwise.

Figure 1: Sunday Creek plan view showing SDDSC108A9 reported here (grey box, blue highlight), selected prior reported drill holes and pending holes. For location see Figure 5.

Figure 2: Sunday Creek longitudinal section across A-B in the plane of the dyke breccia/altered sediment host (see Figure 1) looking towards the north (striking 236 degrees) showing mineralized veins sets. Showing SDDSC108A reported here and prior reported drill holes. Location of Figure 3 (section C-D) marked with red dashed box.

Figure 3: Sunday Creek cross section across C-D in the plane of drillhole SDDSC108A, looking towards the north (striking 092 degrees). Showing SDDSC108A (orange trace) reported here and prior reported drill holes. Section influence is 50 metres.

Figure 4: Sunday Creek regional plan view showing LiDAR, soil sampling, structural framework, regional historic epizonal gold mining areas and broad regional areas (Tonstal, Consols and Leviathan) tested by 12 holes for $2,383 \mathrm{~m}$ drill program. The regional drill areas are at Tonstal, Consols and Leviathan located 4,000-7,500 m along strike from the main drill area at Golden Dyke- Apollo.

Figure 5: Location of the Sunday Creek project, along with SXG's other Victoria projects and simplified geology.
Epizonal Gold DepositsSXG ProjectsSXG Nagambie Right of First Refusal

Agnico Eagle Mines ML (Fosterville)Mandalay Resources (Costerfield)

Igneous Rocks

Table 1: Drill collar summary table for recent drill holes in progress.

Hole_ID	Depth (m)	Prospect	East GDA94_Z55	$\begin{gathered} \text { North } \\ \text { GDA94_Z55 } \end{gathered}$	Elevation	Azimuth	Plunge
SDDSC092	803.8	Rising Sun	330537	5867882	295.5	79.0	-60
SDDSC093	610.9	Rising Sun	331291	5867823	316.8	271	-47.5
SDDSC094	23.3	Rising Sun	330639	5867846	306.2	68.5	-56
SDDSC094A	359.6	Rising Sun	330639	5867846	306.1	68.5	-56
SDDSC095	368.3	Apollo	331291	5867823	316.8	271	-53
SDDSC096	347.9	Rising Sun	330639	5867846	306.1	68	-63.5
SDDSC097	62.3	Apollo	331291	5867823	316.8	276	-50.5
SDDSC097A	575	Apollo	331291	5867823	316.8	277	-50
SDDSC098	278.5	Rising Sun	330639	5867846	306.1	72	-48.5
SDDSC099	284.7	Rising Sun	330639	5867846	306.1	71.5	-58.5
SDDSC100	1042	Rising Sun	330482	5867891	289.5	74.5	-64
SDDSC101	181.5	Rising Sun	330639	5867846	306.1	63	-37
SDDSC102	596.8	Rising Sun	330537	5867883	295.5	75	-59
SDDSC103	260.6	Rising Sun	330639	5867847	306.1	53	-53
SDDSC104	595.2	Rising Sun	330639	5867847	306.1	64.5	-65.7
SDDSC105	353.6	Apollo	331291	5867823	316.8	275.3	-55.2
SDDSC106	653.5	Apolo	331291	5867823	316.8	279.5	-53
SDDSC107	815.9	Rising Sun	330537	5867883	295.5	77.5	-62
SDDSC108A	855.9	Apollo	331464	5867865	333	272.5	-50
SDDSC109	520.9	Apollo	331291	5867823	316.8	273.5	-44.5
SDDSC110	856.7	Rising Sun	330482	5867892	289.5	78	-66
SDDSC111	496.7	Apollo	331291	5867823	316.8	270	-38
SDDSC112	490.9	Apollo	331464	5867865	333	267	-42
SDDSC112W1	766.4	Apollo	331329	5867859	200	267	-42
SDDSC113	905.5	Rising Sun	330511	5867853	296.6	67.5	-63.5
SDDSC114	878.6	Rising Sun	330464	5867914	286.6	82	-58
SDDSC115	17.6	Rising Sun	330464	5867912	286.6	83	-58.5
SDDSC115A	926.6	Rising Sun	330464	5867912	286.7	83	-59
SDDSC116	In progress plan 810 m	Rising Sun	331465	5867865	333.3	272.5	-41.5
SDDSC117	In progress plan 1200 m	Rising Sun	330510	5867852	296.5	70.5	-64.5
SDDSC118	In progress plan 1100 m	Rising Sun	330464	5867912	286.6	80	-64.5

Table 2: Tables of mineralized drill hole intersections reported from SDDSC108A using two cut-off criteria. Lower grades cut at $1.0 \mathrm{~g} / \mathrm{t}$ lower cutoff over a maximum of 2 m with higher grades cut at $5.0 \mathrm{~g} / \mathrm{t}$ AuEq cutoff over a maximum of 1 m .

Hole-ID	From (m)	To (m)	Length (m)	Aug/t	Sb\%	AuEq g/t
SDDSC108A	354.05	365.00	11.0	1.9	2.0	5.0
including	354.35	354.70	0.3	0.8	3.6	6.4
including	357.62	358.40	0.8	12.0	5.7	21.0
including	359.45	360.45	1.0	1.0	8.9	15.0
including	363.00	364.40	1.4	3.3	3.5	8.8
SDDSC108A	382.80	385.25	2.4	5.6	0.3	6.1
including	383.15	383.50	0.4	12.6	0.2	13.0
including	384.60	385.25	0.6	10.2	0.3	10.7
SDDSC108A	419.00	419.30	0.3	19.6	2.6	23.7
SDDSC108A	438.40	438.65	0.3	48.8	0.0	48.8
SDDSC108A	440.70	450.50	9.8	1.6	0.1	1.8
including	441.30	441.60	0.3	5.0	0.0	5.0
SDDSC108A	636.18	643.97	7.8	1.0	1.0	2.6
including	636.93	638.00	1.1	1.7	2.6	5.9
including	641.50	641.70	0.2	2.3	2.1	5.6
SDDSC108A	655.58	665.35	9.8	1.8	1.3	3.9
including	657.78	658.98	1.2	8.6	6.8	19.4
including	664.55	665.05	0.5	3.2	2.1	6.5
SDDSC108A	674.10	674.40	0.3	1.0	1.1	2.8
SDDSC108A	680.35	680.59	0.2	0.5	1.3	2.5
SDDSC108A	694.88	700.35	5.5	0.7	0.3	1.2
SDDSC108A	707.56	712.78	5.2	2.3	0.6	3.2
including	707.78	707.98	0.2	33.9	6.9	44.8
SDDSC108A	762.91	763.15	0.2	576.0	0.1	576.1
SDDSC108A	787.92	789.15	1.2	0.9	0.1	1.1
SDDSC108A	797.90	798.98	1.1	16.9	0.1	17.1
SDDSC108A	801.82	803.70	1.9	0.8	0.2	1.2
SDDSC108A	821.20	822.39	1.2	0.9	0.5	1.7
SDDSC108A	832.94	833.32	0.4	3.2	0.0	3.2

Table 3: All individual assays reported from SDDSC108A reported here $>0.1 \mathrm{~g} / \mathrm{t}$ AuEq.

Hole-ID	From (m)	To (m)	Length (m)	Aug/t	Sb\%	AuEq g/t
SDDSC108A	235.00	235.70	0.7	0.2	0.0	0.2
SDDSC108A	235.70	236.65	1.0	0.1	0.0	0.1
SDDSC108A	238.83	239.76	0.9	0.1	0.0	0.1
SDDSC108A	346.15	347.20	1.1	0.2	0.0	0.2
SDDSC108A	349.25	350.10	0.9	0.2	0.0	0.2
SDDSC108A	350.10	350.70	0.6	0.3	0.0	0.3
SDDSC108A	350.70	351.05	0.4	0.4	0.2	0.7
SDDSC108A	351.05	351.80	0.8	0.5	0.0	0.5
SDDSC108A	351.80	352.55	0.8	0.3	0.0	0.3
SDDSC108A	352.55	353.05	0.5	0.2	0.0	0.2
SDDSC108A	353.05	354.05	1.0	0.1	0.0	0.1
SDDSC108A	354.05	354.35	0.3	0.7	2.7	5.0
SDDSC108A	354.35	354.70	0.4	0.8	3.6	6.4
SDDSC108A	354.70	355.95	1.3	1.5	0.0	1.5
SDDSC108A	355.95	357.30	1.4	0.3	0.0	0.4
SDDSC108A	357.30	357.62	0.3	0.9	0.0	0.9
SDDSC108A	357.62	357.95	0.3	2.4	2.6	6.6
SDDSC108A	357.95	358.40	0.5	19.0	8.0	31.6
SDDSC108A	358.40	358.77	0.4	0.3	0.2	0.6
SDDSC108A	358.77	359.45	0.7	0.6	0.6	1.6
SDDSC108A	359.45	360.05	0.6	1.3	6.9	12.1
SDDSC108A	360.05	360.45	0.4	0.5	11.9	19.3
SDDSC108A	361.95	362.40	0.5	0.2	0.0	0.2
SDDSC108A	362.40	363.00	0.6	1.8	0.3	2.3
SDDSC108A	363.00	363.30	0.3	2.7	1.5	5.1
SDDSC108A	363.70	364.00	0.3	1.9	0.4	2.6
SDDSC108A	364.00	364.40	0.4	8.1	10.7	25.0
SDDSC108A	364.40	364.70	0.3	2.7	1.4	4.9
SDDSC108A	364.70	365.00	0.3	1.1	0.6	2.1
SDDSC108A	366.00	367.00	1.0	0.1	0.0	0.1
SDDSC108A	367.00	368.00	1.0	0.2	0.0	0.2
SDDSC108A	369.00	369.50	0.5	0.1	0.0	0.1
SDDSC108A	369.50	370.70	1.2	0.5	0.0	0.6
SDDSC108A	370.70	371.90	1.2	0.2	0.0	0.2
SDDSC108A	371.90	372.90	1.0	0.1	0.0	0.1
SDDSC108A	372.90	373.60	0.7	0.2	0.0	0.2
SDDSC108A	377.40	378.00	0.6	0.1	0.0	0.1
SDDSC108A	378.00	378.80	0.8	0.2	0.0	0.2
SDDSC108A	381.00	381.80	0.8	0.2	0.0	0.3

SDDSC108A	382.80	383.15	0.4	1.2	0.4	1.8
SDDSC108A	383.15	383.50	0.4	12.6	0.2	13.0
SDDSC108A	383.50	384.00	0.5	2.1	0.6	3.1
SDDSC108A	384.00	384.30	0.3	2.4	0.4	2.9
SDDSC108A	384.30	384.60	0.3	1.4	0.0	1.4
SDDSC108A	384.60	384.75	0.2	7.3	1.3	9.3
SDDSC108A	384.75	385.25	0.5	11.1	0.0	11.1
SDDSC108A	385.25	385.75	0.5	0.6	0.0	0.6
SDDSC108A	385.75	386.60	0.9	0.2	0.0	0.2
SDDSC108A	386.60	387.00	0.4	0.8	0.0	0.8
SDDSC108A	387.00	387.55	0.6	0.9	0.0	0.9
SDDSC108A	398.35	399.30	1.0	0.3	0.0	0.3
SDDSC108A	399.30	399.80	0.5	0.3	0.0	0.4
SDDSC108A	399.80	400.55	0.8	0.6	0.0	0.6
SDDSC108A	400.55	401.45	0.9	0.4	0.0	0.4
SDDSC108A	401.45	401.95	0.5	0.6	0.0	0.6
SDDSC108A	401.95	402.65	0.7	0.3	0.0	0.3
SDDSC108A	402.65	403.05	0.4	0.1	0.0	0.1
SDDSC108A	418.00	419.00	1.0	0.3	0.0	0.4
SDDSC108A	419.00	419.30	0.3	19.6	2.6	23.7
SDDSC108A	419.30	420.50	1.2	0.6	0.0	0.6
SDDSC108A	420.50	421.70	1.2	0.2	0.0	0.2
SDDSC108A	422.80	424.00	1.2	0.5	0.0	0.5
SDDSC108A	424.00	425.00	1.0	0.3	0.0	0.3
SDDSC108A	426.00	427.00	1.0	0.1	0.0	0.1
SDDSC108A	427.00	428.00	1.0	0.3	0.0	0.3
SDDSC108A	428.00	429.00	1.0	0.2	0.0	0.2
SDDSC108A	429.00	430.00	1.0	0.4	0.0	0.4
SDDSC108A	435.00	436.00	1.0	0.5	0.0	0.6
SDDSC108A	437.00	438.00	1.0	0.2	0.0	0.2
SDDSC108A	438.00	438.40	0.4	0.2	0.0	0.2
SDDSC108A	438.40	438.65	0.3	48.8	0.0	48.8
SDDSC108A	438.65	439.00	0.4	0.6	0.0	0.6
SDDSC108A	439.00	439.90	0.9	0.5	0.0	0.5
SDDSC108A	439.90	440.70	0.8	0.9	0.0	0.9
SDDSC108A	440.70	441.30	0.6	1.4	0.3	1.8
SDDSC108A	441.30	441.60	0.3	5.0	0.0	5.0
SDDSC108A	441.60	442.60	1.0	0.4	0.0	0.4
SDDSC108A	442.60	443.10	0.5	0.8	0.0	0.8
SDDSC108A	443.10	443.50	0.4	2.7	1.4	4.9
SDDSC108A	443.50	444.30	0.8	1.9	0.0	1.9
SDDSC108A	444.30	445.35	1.1	1.4	0.0	1.4
SDDSC108A	445.35	446.30	1.0	2.7	0.0	2.7

SDDSC108A	446.30	447.00	0.7	1.2	0.0	1.2
SDDSC108A	447.00	448.00	1.0	1.7	0.2	2.0
SDDSC108A	448.00	449.00	1.0	1.1	0.0	1.1
SDDSC108A	449.00	450.00	1.0	0.4	0.0	0.4
SDDSC108A	450.00	450.50	0.5	3.9	0.0	3.9
SDDSC108A	450.50	451.60	1.1	0.1	0.0	0.1
SDDSC108A	451.60	452.60	1.0	0.3	0.0	0.3
SDDSC108A	452.60	453.70	1.1	0.5	0.0	0.5
SDDSC108A	466.33	466.60	0.3	0.4	0.0	0.4
SDDSC108A	468.30	468.59	0.3	0.3	0.0	0.4
SDDSC108A	468.59	469.00	0.4	0.1	0.0	0.1
SDDSC108A	469.00	469.41	0.4	0.6	0.0	0.6
SDDSC108A	469.41	469.74	0.3	0.1	0.0	0.1
SDDSC108A	469.74	470.32	0.6	0.8	0.0	0.8
SDDSC108A	470.32	470.89	0.6	0.5	0.0	0.5
SDDSC108A	470.89	471.68	0.8	0.4	0.0	0.4
SDDSC108A	488.90	489.76	0.9	0.1	0.0	0.1
SDDSC108A	490.31	490.58	0.3	0.9	0.0	0.9
SDDSC108A	490.97	491.39	0.4	0.1	0.0	0.1
SDDSC108A	491.39	491.80	0.4	0.4	0.0	0.4
SDDSC108A	497.20	497.92	0.7	0.7	0.0	0.7
SDDSC108A	497.92	498.28	0.4	0.2	0.0	0.2
SDDSC108A	500.38	500.79	0.4	0.2	0.0	0.2
SDDSC108A	509.87	510.37	0.5	0.1	0.0	0.1
SDDSC108A	632.63	633.19	0.6	0.4	0.1	0.5
SDDSC108A	633.97	634.88	0.9	0.2	0.0	0.2
SDDSC108A	634.88	635.50	0.6	0.1	0.0	0.1
SDDSC108A	635.50	635.72	0.2	0.6	0.1	0.7
SDDSC108A	635.72	636.18	0.5	0.1	0.0	0.1
SDDSC108A	636.18	636.53	0.4	1.3	1.9	4.3
SDDSC108A	636.53	636.93	0.4	1.5	1.4	3.7
SDDSC108A	636.93	637.16	0.2	1.8	3.5	7.4
SDDSC108A	637.16	637.41	0.3	1.0	0.4	1.7
SDDSC108A	637.41	638.00	0.6	2.0	3.2	7.0
SDDSC108A	638.00	638.38	0.4	2.1	0.7	3.3
SDDSC108A	638.38	638.96	0.6	0.6	0.5	1.4
SDDSC108A	638.96	639.80	0.8	0.5	0.2	0.8
SDDSC108A	639.80	640.40	0.6	0.1	0.0	0.1
SDDSC108A	640.40	640.69	0.3	1.9	1.5	4.3
SDDSC108A	640.69	641.50	0.8	0.6	1.3	2.6
SDDSC108A	641.50	641.70	0.2	2.3	2.1	5.6
SDDSC108A	641.70	642.37	0.7	1.0	1.2	2.9
SDDSC108A	642.37	643.44	1.1	0.6	0.1	0.7

SDDSC108A	643.44	643.97	0.5	1.3	0.3	1.8
SDDSC108A	643.97	644.95	1.0	0.7	0.1	0.9
SDDSC108A	644.95	645.25	0.3	0.5	0.2	0.8
SDDSC108A	645.25	646.00	0.8	0.1	0.0	0.1
SDDSC108A	652.00	653.00	1.0	0.1	0.0	0.1
SDDSC108A	653.00	653.79	0.8	0.2	0.0	0.2
SDDSC108A	654.45	654.82	0.4	0.0	0.0	0.1
SDDSC108A	654.82	655.34	0.5	0.2	0.0	0.2
SDDSC108A	655.34	655.58	0.2	0.3	0.1	0.5
SDDSC108A	655.58	656.22	0.6	0.2	0.7	1.2
SDDSC108A	656.22	656.77	0.6	0.2	0.5	0.9
SDDSC108A	656.77	657.14	0.4	0.2	0.5	1.0
SDDSC108A	657.14	657.78	0.6	0.4	0.5	1.1
SDDSC108A	657.78	658.00	0.2	24.1	2.8	28.5
SDDSC108A	658.00	658.45	0.5	7.7	15.1	31.5
SDDSC108A	658.45	658.98	0.5	3.0	1.5	5.3
SDDSC108A	658.98	659.48	0.5	0.8	0.4	1.5
SDDSC108A	659.48	659.80	0.3	0.5	0.3	0.9
SDDSC108A	659.80	660.22	0.4	0.8	0.3	1.3
SDDSC108A	660.22	660.85	0.6	2.5	0.6	3.4
SDDSC108A	660.85	661.69	0.8	0.2	0.2	0.5
SDDSC108A	662.17	662.55	0.4	0.7	0.3	1.2
SDDSC108A	662.55	662.83	0.3	0.8	0.8	2.0
SDDSC108A	662.83	663.17	0.3	0.4	0.6	1.4
SDDSC108A	663.17	663.65	0.5	0.4	0.3	0.8
SDDSC108A	663.65	664.00	0.4	2.0	0.9	3.4
SDDSC108A	664.00	664.55	0.6	1.0	0.7	2.0
SDDSC108A	664.55	665.05	0.5	3.2	2.1	6.5
SDDSC108A	665.05	665.35	0.3	1.2	0.6	2.2
SDDSC108A	665.35	665.92	0.6	0.2	0.1	0.4
SDDSC108A	666.89	667.70	0.8	0.2	0.1	0.4
SDDSC108A	667.70	668.24	0.5	0.3	0.1	0.4
SDDSC108A	668.24	668.92	0.7	0.0	0.0	0.1
SDDSC108A	669.68	670.25	0.6	0.1	0.0	0.1
SDDSC108A	673.00	674.10	1.1	0.0	0.0	0.1
SDDSC108A	674.10	674.40	0.3	1.0	1.1	2.8
SDDSC108A	674.40	675.00	0.6	0.2	0.1	0.3
SDDSC108A	675.00	675.55	0.6	0.0	0.0	0.1
SDDSC108A	679.00	680.00	1.0	0.0	0.0	0.1
SDDSC108A	680.00	680.35	0.4	0.1	0.0	0.1
SDDSC108A	680.35	680.59	0.2	0.5	1.3	2.5
SDDSC108A	681.50	682.22	0.7	0.3	0.0	0.3
SDDSC108A	694.88	695.55	0.7	1.4	0.0	1.4

SDDSC108A	695.89	696.86	1.0	0.4	0.4	1.0
SDDSC108A	696.86	697.05	0.2	1.9	0.9	3.3
SDDSC108A	698.00	698.65	0.7	0.7	0.1	0.9
SDDSC108A	698.65	699.25	0.6	0.8	0.3	1.3
SDDSC108A	699.25	699.88	0.6	1.0	1.3	3.0
SDDSC108A	699.88	700.35	0.5	1.3	0.3	1.8
SDDSC108A	706.00	707.00	1.0	0.3	0.0	0.3
SDDSC108A	707.56	707.78	0.2	0.5	1.3	2.6
SDDSC108A	707.78	707.98	0.2	33.9	6.9	44.8
SDDSC108A	707.98	708.64	0.7	0.1	0.3	0.6
SDDSC108A	708.64	708.85	0.2	3.5	0.2	3.7
SDDSC108A	708.85	709.40	0.6	0.4	0.0	0.5
SDDSC108A	709.40	709.75	0.4	4.4	0.3	4.9
SDDSC108A	710.30	710.67	0.4	0.3	0.4	0.9
SDDSC108A	710.67	711.11	0.4	0.2	0.1	0.3
SDDSC108A	711.11	711.49	0.4	0.6	0.5	1.4
SDDSC108A	711.49	711.87	0.4	1.0	0.0	1.1
SDDSC108A	711.87	712.37	0.5	1.4	0.8	2.5
SDDSC108A	712.37	712.78	0.4	2.0	1.0	3.5
SDDSC108A	712.78	713.40	0.6	0.1	0.0	0.1
SDDSC108A	713.40	714.00	0.6	0.1	0.0	0.1
SDDSC108A	729.72	730.00	0.3	0.1	0.0	0.1
SDDSC108A	758.23	758.45	0.2	0.1	0.0	0.1
SDDSC108A	762.91	763.15	0.2	576.0	0.1	576.1
SDDSC108A	763.15	764.00	0.9	0.1	0.0	0.1
SDDSC108A	766.26	766.45	0.2	0.3	0.1	0.4
SDDSC108A	766.45	766.71	0.3	0.2	0.0	0.2
SDDSC108A	769.46	769.69	0.2	0.3	0.0	0.3
SDDSC108A	787.14	787.31	0.2	0.1	0.0	0.1
SDDSC108A	787.92	788.65	0.7	0.8	0.1	1.1
SDDSC108A	788.65	789.15	0.5	1.1	0.0	1.1
SDDSC108A	790.00	790.26	0.3	0.8	0.1	0.9
SDDSC108A	797.90	798.16	0.3	64.8	0.3	65.3
SDDSC108A	798.80	798.98	0.2	8.0	0.1	8.1
SDDSC108A	800.92	801.24	0.3	0.2	0.0	0.2
SDDSC108A	801.24	801.44	0.2	0.3	0.0	0.3
SDDSC108A	801.44	801.82	0.4	0.3	0.3	0.8
SDDSC108A	801.82	802.36	0.5	2.2	0.4	2.8
SDDSC108A	802.36	802.70	0.3	0.3	0.0	0.3
SDDSC108A	802.70	803.35	0.7	0.3	0.0	0.4
SDDSC108A	803.35	803.70	0.4	0.2	0.6	1.2
SDDSC108A	804.00	804.37	0.4	0.2	0.0	0.2
SDDSC108A	804.37	804.57	0.2	0.2	0.1	0.3

SDDSC108A	804.57	805.00	0.4	0.2	0.0	0.2
SDDSC108A	805.19	806.10	0.9	0.1	0.0	0.1
SDDSC108A	806.10	807.22	1.1	0.5	0.2	0.9
SDDSC108A	809.21	809.43	0.2	0.2	0.0	0.2
SDDSC108A	809.43	809.81	0.4	0.2	0.0	0.2
SDDSC108A	811.11	811.36	0.3	0.1	0.0	0.1
SDDSC108A	817.30	817.40	0.1	0.6	0.0	0.6
SDDSC108A	820.21	820.43	0.2	0.6	0.0	0.6
SDDSC108A	821.20	821.64	0.4	1.0	0.5	1.8
SDDSC108A	821.64	822.39	0.8	0.8	0.5	1.6
SDDSC108A	822.39	822.77	0.4	0.1	0.0	0.1
SDDSC108A	822.77	823.86	1.1	0.3	0.0	0.3
SDDSC108A	826.79	827.26	0.5	0.1	0.0	0.1
SDDSC108A	832.94	833.32	0.4	3.2	0.0	3.2
SDDSC108A	833.32	834.00	0.7	0.8	0.0	0.8
SDDSC108A	834.00	835.00	1.0	0.1	0.0	0.1
SDDSC108A	839.81	840.17	0.4	0.1	0.0	0.1
SDDSC108A	840.17	841.00	0.8	0.1	0.0	0.1
SDDSC108A	846.00	847.00	1.0	0.6	0.0	0.6
SDDSC108A	847.00	847.96	1.0	0.7	0.0	0.7
SDDSC108A	847.96	848.84	0.9	0.2	0.0	0.2

