

NEWS RELEASE

October 16, 2024

SXG Confirms Third High-Grade Gold-Antimony Mineralised Zone at Sunday Creek Project

140 m Down-dip Extension, Includes 3.3 m @ 34.1 g/t AuEq and 12.9 m @ 7.4 g/t AuEq

Vancouver, Canada — <u>Mawson Gold Limited</u> ("Mawson" or the "Company") (TSXV:MAW) (Frankfurt:MXR) (PINKSHEETS: MWSNF) announces Southern Cross Gold Ltd. ("Southern Cross Gold" or "SXG") has made a significant discovery expanding mineralisation 140 m below previous drilling at the historic Golden Dyke mine at the 100%-owned Sunday Creek Gold-Antimony Project in Victoria (Figure 5).

Results from two diamond drill holes (SDDSC132 and SDDSC138 – Figures 1 and 2) significantly improve the immediate prospectivity of Sunday Creek demonstrating that Golden Dyke has become the third high-grade gold-antimony prospect located 260 m and 600 m west respectively from the first two, Rising Sun and Apollo.

Highlights:

- **High-Grade Results**: Drilling has yielded further exceptional results 140 m below previous drilling at Golden Dyke. These discoveries are located outside the January 23, 2024 exploration target estimation, and include:
 - SDDSC138, drilled up to 250 m below surface, confirmed twelve vein sets from Rising Sun to Golden Dyke. The hole demonstrated high-grade continuity in three vein sets and defined nine new vein sets. The hole included 15 intercepts of Au > 20 g/t (up to 183 g/t Au) and 19 intercepts of Sb > 5% (up to 33.8% Sb). Selected highlights include:
 - o **3.3 m @ 34.1 g/t AuEq** (24.6 g/t Au, 5.0% Sb) from 294.6 m, including:
 - 1.8 m @ 62.3 g/t AuEq (44.8 g/t Au, 9.3% Sb) from 294.6 m
 - o **12.9 m @ 7.4 g/t AuEq** (4.5 g/t Au, 1.6% Sb) from 311.0 m, including:
 - 3.1 m @ 20.2 g/t AuEq (11.3 g/t Au, 4.7% Sb) from 316.9 m
 - SDDSC132, drilled up to 480 m below surface, is the **deepest reported hole drilled east-west at** Golden Dyke. The hole intercepted six vein sets across Rising Sun and Golden Dyke, five of which are new. Selected highlights include:
 - o 2.2 m @ 16.7 g/t AuEq (13.0 g/t Au, 2.0% Sb) from 146.2 m, including:
 - 0.3 m @ 110.1 g/t AuEq (77.0 g/t Au, 17.6% Sb) from 146.4 m
 - o **6.5 m @ 4.7 g/t AuEq** (3.0 g/t Au, 0.9% Sb) from 541.9 m, including:
 - **2.6 m @ 10.5 g/t AuEq** (6.9 g/t Au, 1.9% Sb) from 543.2 m
- **Ongoing Exploration:** The company has planned a significant number of further holes under Golden Dyke, with 60 km of diamond drilling planned at Sunday Creek over the next year. Twenty-two holes are currently being processed and analysed with an additional five holes in progress. Five rigs are operating with a sixth rig due at site during early November 2024.
- Mawson owns 96,590,910 shares of SXG (48.7%), valuing its stake at A\$317.8 million (C\$293.3 million) based on SXG's closing price on October 15, 2024 AEDT.

Michael Hudson, Mawson Interim CEO and Executive Chairman, states: "The Sunday Creek project keeps on delivering, this time through more high-grade gold and antimony results from our deepest holes under the most prolific historic mine, Golden Dyke, which now joins Rising Sun and Apollo as the third highgrade mineralised prospect at Sunday Creek.

"Sunday Creek continues to expand and be better understood through our systematic drill program. SDDSC138 has revealed twelve vein sets, including nine that were previously unmodelled. High-grade intercepts, such as 1.8 m @ 62.3 g/t AuEq from 294.6 m, confirm that the system continues below the historic Golden Dyke mine and west of the prior globally-leading drill results we have already delivered below the historic Rising Sun and Apollo mines.

"Importantly, SDDSC132, drilled up to 480 m below surface is our deepest east-west hole at Golden Dyke to date, intercepted six vein sets, indicating that the mineralisation extends at depth as it does at Rising Sun and Apollo immediately to its east. This hole was targeted to test up to 140 m below our previously reported SDDSC130 and demonstrates continuity of the system, that is crucial for our ongoing definition work.

"The Golden Dyke area is situated 260 m west of Rising Sun and 600 m west of Apollo and represents a significant expansion of the known mineralised footprint at the exciting Sunday Creek project. These results are particularly significant as they establish a third distinct high-grade mineralised zone within the Sunday Creek project. The identification of this new zone, alongside the previously known Rising Sun and Apollo areas, substantially increases the project's potential.

"With our planned 60 km diamond drilling program over the coming year, we expect to further delineate these zones and potentially uncover additional mineralised areas, that could significantly expand our mineral inventory at Sunday Creek.

"Strategically, these exciting discoveries compliment recent SXG releases that outline additional freehold land acquisitions, regional geophysical surveys and the Scheme of Arrangement with Mawson Gold Ltd that will lead to a consolidated ownership of Sunday Creek, as well as a dual listing in Australia and Canada on both the ASX and TSXV respectively."

Drill Hole Discussion

SDDSC138 was drilled east to west, parallel to and within the dyke/breccia host structure (the ladder "rails") and intercepted twelve mineralised vein sets (the ladder "rungs") across Rising Sun and Golden Dyke, while testing a prospective corridor of 292 m (cumulative downhole length of dyke and sericite/carbonate altered sediment). SDDSC138 included **15 intercepts of Au > 20 g/t (up to 183 g/t Au)** and **19 intercepts of Sb > 5% (up to 33.8% Sb)**. This hole drilled up to 250 m below surface and 55 m to 85 m above and parallel to SDDSC130 (reported <u>September 05, 2024</u>) which provided continuity of mineralised structures, some relatively close to surface:

Extended highlights from SDDSC138 include:

- **0.3 m @ 38.3 g/t AuEq** (24.7 g/t Au, 7.3% Sb) from 131.9 m, including:
 - o **0.1 m @ 122.2 g/t AuEq** (77.5 g/t Au, 23.8% Sb) from 131.9 m
- 1.9 m @ 2.0 g/t AuEq (0.7 g/t Au, 0.7% Sb) from 143.2 m
- 1.2 m @ 8.4 g/t AuEq (8.2 g/t Au, 0.1% Sb) from 285.9 m
- **3.3 m @ 34.1 g/t AuEq** (24.6 g/t Au, 5.0% Sb) from 294.6 m, including:
 - **1.8 m @ 62.3 g/t AuEq** (44.8 g/t Au, 9.3% Sb) from 294.6 m
- 1.0 m @ 2.9 g/t AuEq (0.7 g/t Au, 1.2% Sb) from 302.5 m
- **12.9 m @ 7.4 g/t AuEq** (4.5 g/t Au, 1.6% Sb) from 311.0 m, including:
 - **0.4 m @ 20.3 g/t AuEq** (16.4 g/t Au, 2.1% Sb) from 311.0 m
 - **1.6 m @ 11.9 g/t AuEq** (7.9 g/t Au, 2.1% Sb) from 313.0 m
 - **3.1 m @ 20.2 g/t AuEq** (11.3 g/t Au, 4.7% Sb) from 316.9 m
- **3.0 m @ 3.1 g/t AuEq** (2.8 g/t Au, 0.2% Sb) from 336.2 m, including:
 - 1.0 m @ 5.5 g/t AuEq (5.2 g/t Au, 0.1% Sb) from 337.7 m
- 6.9 m @ 3.2 g/t AuEq (2.1 g/t Au, 0.6% Sb) from 351.6 m, including:

2.0 m @ 5.3 g/t AuEq (4.0 g/t Au, 0.7% Sb) from 354.0 m

- 4.7 m @ 1.1 g/t AuEq (0.9 g/t Au, 0.1% Sb) from 367.5 m
- 0.7 m @ 3.7 g/t AuEq (1.1 g/t Au, 1.4% Sb) from 380.9 m
- 2.4 m @ 1.7 g/t AuEq (1.1 g/t Au, 0.3% Sb) from 386.1 m
- 1.4 m @ 3.7 g/t AuEq (2.9 g/t Au, 0.4% Sb) from 398.3 m
- 0.6 m @ 3.6 g/t AuEq (2.9 g/t Au, 0.4% Sb) from 402.3 m
- 4.5 m @ 3.9 g/t AuEq (3.2 g/t Au, 0.4% Sb) from 405.2 m, including:
 - 1.1 m @ 10.8 g/t AuEq (9.9 g/t Au, 0.5% Sb) from 408.2 m
- **10.5 m @ 6.2 g/t AuEq** (4.2 g/t Au, 1.1% Sb) from 414.0 m, including:
 - **1.8 m @ 9.7 g/t AuEq** (6.7 g/t Au, 1.6% Sb) from 414.0 m
 - **0.2 m @ 80.1 g/t AuEq** (78.2 g/t Au, 1.0% Sb) from 417.0 m
 - 2.7 m @ 7.5 g/t AuEq (3.9 g/t Au, 1.9% Sb) from 421.8 m
- 1.1 m @ 17.4 g/t AuEq (12.9 g/t Au, 2.4% Sb) from 427.6 m
- 0.8 m @ 3.0 g/t AuEq (0.5 g/t Au, 1.3% Sb) from 434.4 m
- **3.5 m @ 1.3 g/t AuEq** (0.4 g/t Au, 0.5% Sb) from 439.3 m
- 1.7 m @ 41.7 g/t AuEq (38.3 g/t Au, 1.8% Sb) from 445.0 m
- **8.5 m @ 4.8 g/t AuEq** (1.7 g/t Au, 1.7% Sb) from 453.4 m, including:
 - o **0.5 m @ 22.2 g/t AuEq** (9.7 g/t Au, 6.6% Sb) from 456.7 m
 - o **0.9 m @ 22.8 g/t AuEq** (3.2 g/t Au, 10.4% Sb) from 458.6 m

SDDSC132, drilled up to 480 m below surface, is the deepest reported east to west drill hole (parallel to the ladder "rails") drilled at the Golden Dyke prospect, with two deeper holes being processed/in progress (SDDSC141 and SDDSC147). The hole intercepted six high-grade vein sets across Rising Sun and Golden Dyke (Figures 1 to 3), while testing a prospective corridor of 210 m (cumulative downhole length of dyke and sericite/carbonate altered sediment). SDDSC132 was drilled up to 140 m below and parallel to SDDSC130. The hole included **five intervals of > 20 g/t Au (up to 77.0 g/t Au)** and **five intervals > 5% Sb (up to 17.6% Sb)**.

Extended highlights from SDDSC132 include:

- 0.8 m @ 6.5 g/t AuEq (6.5 g/t Au, 0.0% Sb) from 126.0 m
- **2.2 m @ 16.7 g/t AuEq** (13.0 g/t Au, 2.0% Sb) from 146.2 m, including:
 - 0.3 m @ 110.1 g/t AuEq (77.0 g/t Au, 17.6% Sb) from 146.4 m
 - 0.4 m @ 21.0 g/t AuEq (20.9 g/t Au, 0.0% Sb) from 148.0 m
- 3.3 m @ 1.2 g/t AuEq (0.7 g/t Au, 0.3% Sb) from 151.2 m
- 1.8 m @ 2.3 g/t AuEq (2.3 g/t Au, 0.0% Sb) from 162.1 m
- 1.6 m @ 3.6 g/t AuEq (3.2 g/t Au, 0.2% Sb) from 170.8 m
- **3.5 m @ 4.0 g/t AuEq** (2.8 g/t Au, 0.7% Sb) from 186.6 m, including:
 - 0.1 m @ 57.8 g/t AuEq (28.5 g/t Au, 15.6% Sb) from 186.6 m
- 1.7 m @ 2.4 g/t AuEq (1.9 g/t Au, 0.2% Sb) from 534.3 m
- **6.5 m @ 4.7 g/t AuEq** (3.0 g/t Au, 0.9% Sb) from 541.9 m, including:
 - 2.6 m @ 10.5 g/t AuEq (6.9 g/t Au, 1.9% Sb) from 543.2 m
- **3.6 m @ 3.9 g/t AuEq** (3.0 g/t Au, 0.5% Sb) from 550.8 m, including:
 - 1.8 m @ 4.4 g/t AuEq (2.8 g/t Au, 0.8% Sb) from 550.8 m
- 3.6 m @ 1.0 g/t AuEq (0.7 g/t Au, 0.2% Sb) from 570.2 m

- 1.4 m @ 2.1 g/t AuEq (0.3 g/t Au, 1.0% Sb) from 588.5 m
- **0.7 m @ 2.9 g/t AuEq** (1.7 g/t Au, 0.6% Sb) from 610.3 m.

Pending Results and Update

Twenty-two holes (SDDSC129, 131, 133-137, 139-143, 146, 050W1, 050W2, 092W1, 092W2, 137W1, 137W2) are currently being processed and analyzed, with five holes (SDDSC120W1, 144, 145, 146W1, 147) in progress (Figure 1 and 2).

Exploration Target

On January 23, 2024, SXG announced the maiden gold and antimony Exploration Target at its flagship 100%owned Sunday Creek Project in Victoria, Australia. The Exploration Target ranges reported are shown in Table 1. Notably, the Exploration Target was constrained to the current drill footprint at Apollo and Rising Sun as they contain sufficient drilling to determine continuity and infer grade ranges. This represents approximately one third to one half the strike of the main drill area and significant potential exists to increase the size of the exploration target with high grade drill results drilled for up to 450 m beyond the Exploration Target area. Drilling since January has significantly expanded the footprint of mineralisation beyond the bounds of the exploration target area, especially including SDDSC130 announced in this press release (Figure 2).

Table 1. Sunday Creek Exploration Target for Apollo and Rising Sun at the Sunday Creek Project

Range	Tonnes (Mt)	AuEq g/t*	Au g/t	Sb %	Au Eq (Moz)	Au (Moz)	Sb (kt)
Lower Case	4.4	7.2	5.3	1.2	1.0	0.74	53.5
Upper Case	5.1	9.7	7.8	1.2	1.6	1.28	62.8

The potential quantity and grade of the Exploration Target is conceptual in nature and therefore is an approximation. There has been insufficient exploration to estimate a Mineral Resource and it is uncertain if further exploration will result in the estimation of a Mineral Resource. The Exploration Target has been prepared and reported in accordance with the 2012 edition of the JORC Code.

About Sunday Creek

The Sunday Creek epizonal-style gold project is located 60 km north of Melbourne within 19,365 hectares of granted exploration tenements. SXG is also the freehold landholder of 133.29 hectares that form the key portion in and around the main drilled area at the Sunday Creek Project.

Gold and antimony form in a relay of vein sets that cut across a steeply dipping zone of intensely altered rocks (the "host"). When observed from above, the host resembles the side rails of a ladder, where the sub-vertical mineralised vein sets are the rungs that extend from surface to depth. At Apollo and Rising Sun these individual 'rungs' have been defined over 600 m depth extent from surface to 1,100 m below surface, are 2.5 m to 3.5 m wide (median widths) (and up to 10 m), and 20 m to 100 m in strike.

Cumulatively, 136 drill holes for 61,969 m have been reported by SXG (and Mawson Gold Ltd) from Sunday Creek since late 2020. An additional 11 holes for 566 m from Sunday Creek were abandoned due to deviation or hole conditions. Fourteen drillholes for 2,383 m have been reported regionally outside of the main Sunday Creek drill area. A total of 64 historic drill holes for 5,599 m were completed from the late 1960s to 2008. The project now contains a total of **forty-six (46) >100 g/t AuEq x m and fifty-five (55) >50 to 100 g/t AuEq x m drill holes** by applying a 2 m @ 1 g/t lower cut.

Our systematic drill program is strategically targeting these significant vein formations, initially these have been defined over 1,350 m strike of the host from Christina to Apollo prospects, of which approximately 620 m has been more intensively drill tested (Rising Sun to Apollo). At least 62 'rungs' have been defined to date, defined by high-grade intercepts (20 g/t to >7,330 g/t Au) along with lower grade edges. Ongoing step-out drilling is aiming to uncover the potential extent of this mineralised system.

Geologically, the project is located within the Melbourne Structural Zone in the Lachlan Fold Belt. The regional host to the Sunday Creek mineralisation is an interbedded turbidite sequence of siltstones and minor sandstones metamorphosed to sub-greenschist facies and folded into a set of open north-west trending folds.

Further Information

Further discussion and analysis of the Sunday Creek project by Southern Cross Gold is available on the SXG website at <u>www.southerncrossgold.com.au</u>.

Critical Metal Epizonal Gold-Antimony Deposits

Sunday Creek is an epizonal gold-antimony deposit formed in the late Devonian (like Fosterville, Costerfield and Redcastle), 60 million years later than mesozonal gold systems formed in Victoria (for example Ballarat and Bendigo). Epizonal deposits are a form of orogenic gold deposit classified according to their depth of formation: epizonal (<6 km), mesozonal (6-12 km) and hypozonal (>12 km).

Epizonal deposits in Victoria often have associated high levels of the critical metal, antimony, and Sunday Creek is no exception. China claims a 56 per cent share of global mined supplies of antimony, according to a 2023 European Union study. Antimony features highly on the critical minerals lists of many countries including Australia, the United States of America, Canada, Japan and the European Union. Australia ranks seventh for antimony production despite all production coming from a single mine at Costerfield in Victoria, located nearby to all SXG projects. Antimony alloys with lead and tin which results in improved properties for solders, munitions, bearings and batteries. Antimony is a prominent additive for halogen-containing flame retardants. Adequate supplies of antimony are critical to the world's energy transition, and to the high-tech industry, especially the semi-conductor and defence sectors where it is a critical additive to primers in munitions.

In August 2024, the Chinese government announced it will place export limits on antimony and antimony products. This will put pressure on Western defence supply chains and negatively affect the supply of the metal and push up pricing given China's dominance of the supply of the metal in the global markets. This is positive for SXG as we are likely to have one of the very few large and high-quality projects of antimony in the western world that can feed western demand into the future.

Antimony represents approximately 20% in situ recoverable value of Sunday Creek at an AuEq of 1.88.

Technical Background and Qualified Person

The Qualified Person, Michael Hudson, Executive Chairman and a director of Mawson Gold, and a Fellow of the Australasian Institute of Mining and Metallurgy, has reviewed, verified and approved the technical contents of this release.

Analytical samples are transported to the Bendigo facility of On Site Laboratory Services ("On Site") which operates under both an ISO 9001 and NATA quality systems. Samples were prepared and analyzed for gold using the fire assay technique (PE01S method; 25 gram charge), followed by measuring the gold in solution with flame AAS equipment. Samples for multi-element analysis (BM011 and over-range methods as required) use aqua regia digestion and ICP-MS analysis. The QA/QC program of Southern Cross Gold consists of the systematic insertion of certified standards of known gold content, blanks within interpreted mineralized rock and quarter core duplicates. In addition, On Site inserts blanks and standards into the analytical process.

MAW considers that both gold and antimony that are included in the gold equivalent calculation ("AuEq") have reasonable potential to be recovered at Sunday Creek, given current geochemical understanding, historic production statistics and geologically analogous mining operations. Historically, ore from Sunday Creek was treated onsite or shipped to the Costerfield mine, located 54 km to the northwest of the project, for processing during WW1. The Costerfield mine corridor, now owned by Mandalay Resources Ltd contains two million ounces of equivalent gold (Mandalay Q3 2021 Results), and in 2020 was the sixth highest-grade global underground mine and a top 5 global producer of antimony.

MAW considers that it is appropriate to adopt the same gold equivalent variables as Mandalay Resources Ltd in its <u>Mandalay Technical Report, 2024</u> dated March 28, 2024. The gold equivalence formula used by Mandalay Resources was calculated using Costerfield's 2023 production costs, using a gold price of US\$1,900 per ounce, an antimony price of US\$12,000 per tonne and 2023 total year metal recoveries of 94% for gold and 89% for antimony, and is as follows:

$AuEq = Au (g/t) + 1.88 \times Sb (\%).$

Based on the latest Costerfield calculation and given the similar geological styles and historic toll treatment of Sunday Creek mineralization at Costerfield, SXG considers that a $AuEq = Au (g/t) + 1.88 \times Sb (\%)$ is appropriate to use for the initial exploration targeting of gold-antimony mineralization at Sunday Creek.

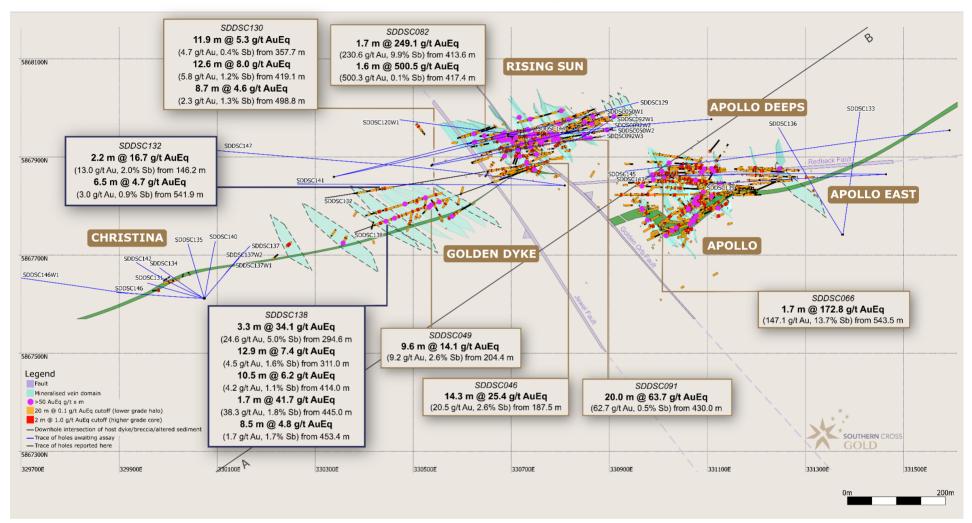
About Mawson Gold Limited (TSXV:MAW, FRANKFURT:MXR, OTCPINK:MWSNF)

<u>Mawson Gold Limited</u> has distinguished itself as a leading Nordic exploration company. Over the last decades, the team behind Mawson has forged a long and successful record of discovering, financing, and advancing mineral projects in the Nordics and Australia. Mawson holds the Skellefteå North gold discovery and a portfolio of historic uranium resources in Sweden. Mawson also holds 48.7% of Southern Cross Gold Ltd. (ASX:SXG) which owns or controls two high-grade, historic epizonal goldfields in Victoria, Australia, including the exciting Sunday Creek Au-Sb discovery.

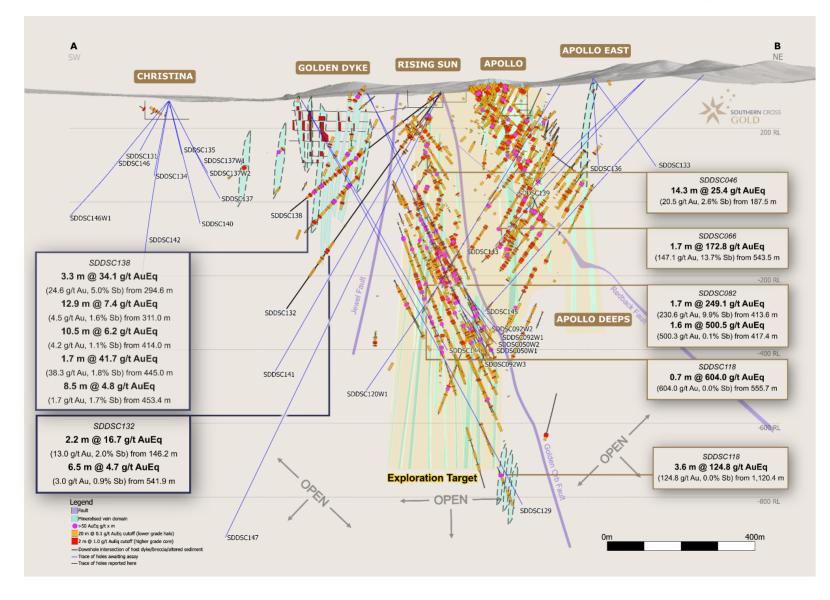
About Southern Cross Gold Ltd (ASX:SXG)

<u>Southern Cross Gold</u> holds the 100%-owned Sunday Creek project in Victoria and Mt Isa project in Queensland, the Redcastle joint venture in Victoria, Australia, and a strategic 6.7% holding in ASX-listed Nagambie Resources Limited (ASX:NAG) which grants SXG a Right of First Refusal over a 3,300 square kilometer tenement package held by NAG in Victoria.

On behalf of the Board,


<u>"Michael Hudson"</u> Michael Hudson, Interim CEO and Executive Chairman Further Information www.mawsongold.com 1305 – 1090 West Georgia St., Vancouver, BC, V6E 3V7 Mariana Bermudez (Canada), Corporate Secretary +1 (604) 685 9316 info@mawsongold.com

Forward-Looking Statement


This news release contains forward-looking statements or forward-looking information within the meaning of applicable securities laws (collectively, "forward-looking statements"). All statements herein, other than statements of historical fact, are forward-looking statements. Although Mawson believes that such statements are reasonable, it can give no assurance that such expectations will prove to be correct. Forward-looking statements are typically identified by words such as: believe, expect, anticipate, intend, estimate, postulate, and similar expressions, or are those, which, by their nature, refer to future events. Mawson cautions investors that any forward-looking statements are not guarantees of future results or performance, and that actual results may differ materially from those in forward-looking statements as a result of various factors, including, Mawson's expectations regarding its ownership interest in Southern Cross Gold, capital and other costs varying significantly from estimates, changes in world metal markets, changes in equity markets, the potential impact of epidemics, pandemics or other public health crises on the Company's business, risks related to negative publicity with respect to the Company or the mining industry in general; exploration potential being conceptual in nature, there being insufficient exploration to define a mineral resource on the Australian-projects owned by SXG, and uncertainty if further exploration will result in the determination of a mineral resource; planned drill programs and results varying from expectations, delays in obtaining results, equipment failure, unexpected geological conditions, local community relations, dealings with non-governmental organizations, delays in operations due to permit grants, environmental and safety risks, and other risks and uncertainties. Any forward-looking statement speaks only as of the date on which it is made and, except as may be required by applicable securities laws, Mawson disclaims any intent or obligation to update any forward-looking statement, whether as a result of new information, future events or results or otherwise.

Neither the TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this news release.

Figure 1: Sunday Creek plan view showing selected results from holes SDDSC132 and 138 reported here (blue highlighted box, black trace), with selected prior reported drill holes and pending holes.

Figure 2: Sunday Creek longitudinal section across A-B in the plane of the dyke breccia/altered sediment host looking towards the north (striking 236 degrees) showing mineralised veins sets. Showing holes SDDSC132 and 138 reported here (blue highlighted box, black trace), with selected intersections and prior reported drill holes. The vertical extents of the vein sets are limited by proximity to drill hole pierce points. For location refer to Figure 1.

Figure 3: Sunday Creek regional plan view showing soil sampling, structural framework, regional historic epizonal gold mining areas and broad regional areas tested by 12 holes for 2,383 m drill program. The regional drill areas are at Tonstal, Consols and Leviathan located 4,000-7,500 m along strike from the main drill area at Golden Dyke- Apollo.

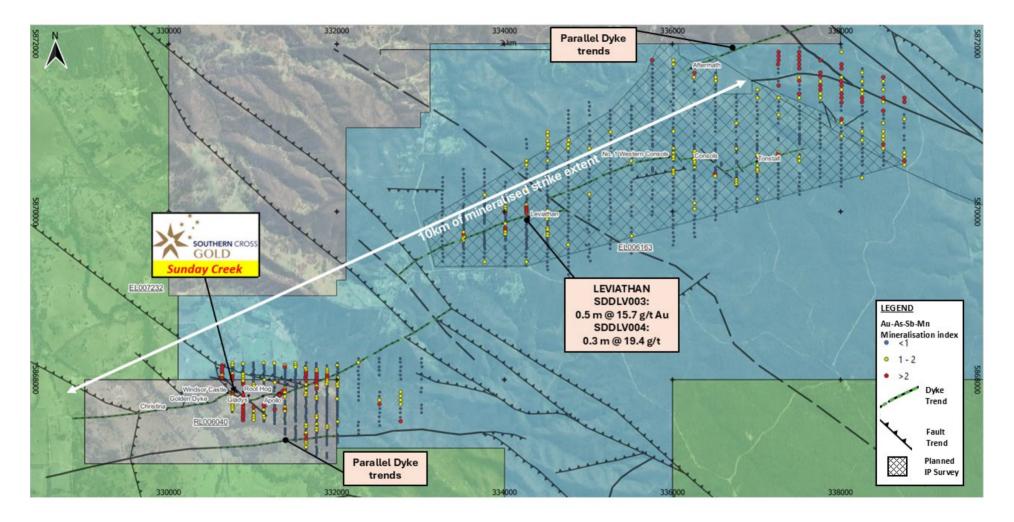
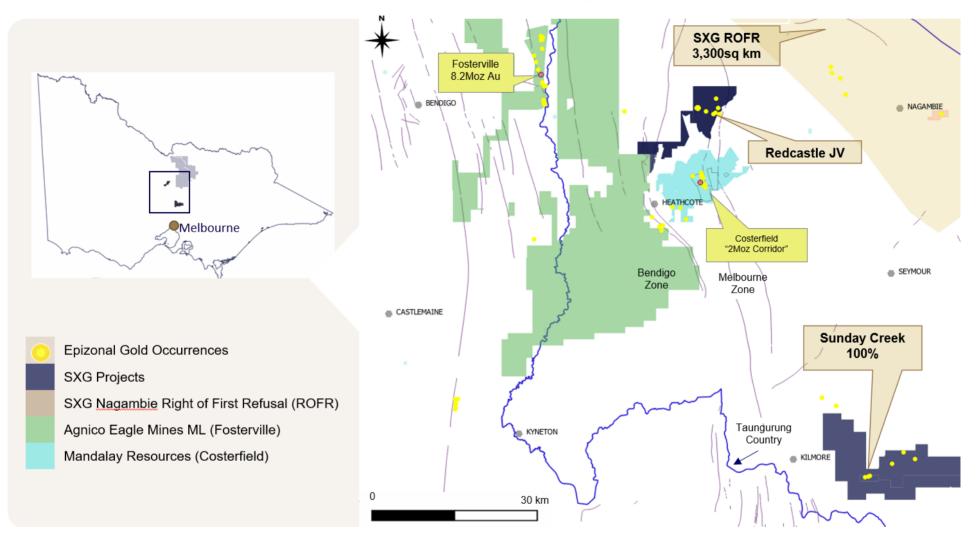



Figure 4: Location of the Sunday Creek project, along with the Redcastle JV and simplified geology.

Table 1: Drill collar summary table for recent drill holes in progress.

Hole_ID	Depth (m)	Prospect	East GDA94_Z55	North GDA94_Z55	Elevation	Azimuth	Plunge
SDDSC114W1	625.1	Rising Sun	330464	5867914	286.6	82	-58
SDDSC119W1	643	Apollo	331498	5867858	336.7	272.5	-45.2
SDDSC123	124.3	Apollo	331499	5867859	337	276	-52
SDDSC124	969.3	Apollo	331499	5867859	337	274	-52.2
SDDSC121W1	953.4	Rising Sun	330510	5867852	296.6	72	-63.8
SDDSC125	551.7	Golden Dyke	330462	5867920	285.6	212	-68
SDDSC126	941.4	Rising Sun	330815	5867599	295.7	321.6	-54
SDDSC122W1	1007.8	Rising Sun	330338	5867860	276.5	72	-61.4
SDDSC050W1	797.1	Rising Sun	330539	5867885	295.3	77	-63
SDDSC127	483.2	Apollo	331498	5867858	336.9	271.3	-43.3
SDDSC128	745.1	Apollo	331465	5867867	333.1	272.6	-43.3
SDDSC129	1269.8	Rising Sun	330388	5867860	276.5	77.3	-57.3
SDDSC092W1	767	Rising Sun	330537.2	5867882.6	295.5	82.2	-61.1
SDDSC130	614	Golden Dyke	330777	5867891	295.9	255	-42
SDDSC050W2	789.4	Rising Sun	330539	5867885	295.3	77	-63
SDDSC131	179.6	Christina	330081	5867609	273.1	284	-47
SDDSC132	746.3	Golden Dyke	330776.9	5867890.5	295.9	261.5	-50
SDDSC133	347.2	Apollo East	331380	5867740	335	8	-42
SDDSC134	230.9	Christina	330080.9	5867609.3	273.1	302.5	-61.5
SDDSC135	182.4	Christina	330080.9	5867609.3	273.1	342.5	-51
SDDSC136	349	Apollo East	331380	5867740	335	329	-41
SDDSC137	299.7	Christina	330080.9	5867609.3	273	40	-62
SDDSC138	530.1	Golden Dyke	330776.9	5867890.5	296	250	-36
SDDSC139	469.2	Apollo East	331465.4	5867865.1	333.2	267	-37.4
SDDSC140	349.9	Christina	330080.9	5867609.3	273.1	8.9	-70.2
SDDSC092W2	739.3	Rising Sun	330537.2	5867882.6	295.5	82.2	-61.1
SDDSC137W1	199.5	Christina	330074.9	5867612.4	273.6	41	-61.9
SDDSC137W2	223	Christina	330074.9	5867612.4	273.6	41	-61.9
SDDSC092W3	799.5	Rising Sun	330537.2	5867882.6	295.5	82.2	-61.1
SDDSC141	935.3	Golden Dyke	330809	5867842	301	271.5	-53
SDDSC142	500.7	Christina	330075	5867612	273.6	292	-70
SDDSC143	667.8	Apollo	331464.1	5867864.9	332.9	270.3	-39.1
SDDSC144	In progress plan 700 m	Rising Sun	330338.1	5867860	276.5	76	-55.5
SDDSC145	In progress plan 925 m	Apollo	331593.6	5867955	344.4	264.2	-40
SDDSC120W1	In progress plan 1050 m	Rising Sun	331107.9	5867977.2	319.2	266.5	-55
SDDSC146	245.7	Christina	330072.8	5867611.9	273.7	273	-42
SDDSC146W1	In progress plan 500 m	Christina	330072.8	5867611.9	273.7	273	-42
SDDSC147	In progress plan 1430 m	Golden Dyke	330809	5867842	277.5	277.5	-56.5

Table 2: Table of mineralised drill hole intersections reported from SDDSC132 and 138 using two cutoff criteria. Lower grades cut at 1.0 g/t AuEq lower cutoff over a maximum of 2 m with higher grades cut at 5.0 g/t AuEq cutoff over a maximum of 1 m.

Hole-ID	From (m)	To (m)	Length (m)	Au g/t	Sb%	AuEq g/t
SDDSC132	126.0	126.8	0.8	6.5	0.0	6.5
SDDSC132	146.2	148.4	2.2	13.0	2.0	16.7
including	146.4	146.7	0.3	77.0	17.6	110.1
including	148.0	148.4	0.4	20.9	0.0	21.0
SDDSC132	151.2	154.5	3.3	0.7	0.3	1.2
SDDSC132	162.1	163.9	1.8	2.3	0.0	2.3
SDDSC132	170.8	172.4	1.6	3.2	0.2	3.6
SDDSC132	186.6	190.1	3.5	2.8	0.7	4.0
including	186.6	186.7	0.1	28.5	15.6	57.8
SDDSC132	534.3	536.0	1.7	1.9	0.2	2.4
SDDSC132	541.9	548.4	6.5	3.0	0.9	4.7
including	543.2	545.8	2.6	6.9	1.9	10.5
SDDSC132	550.8	554.4	3.6	3.0	0.5	3.9
including	550.8	552.6	1.8	2.8	0.8	4.4
SDDSC132	570.2	573.8	3.6	0.7	0.2	1.0
SDDSC132	588.5	589.9	1.4	0.3	1.0	2.1
SDDSC132	610.3	611.0	0.7	1.7	0.6	2.9
SDDSC138	131.9	132.2	0.3	24.7	7.3	38.3
including	131.9	132.0	0.1	77.5	23.8	122.2
SDDSC138	143.2	145.1	1.9	0.7	0.7	2.0
SDDSC138	285.9	287.1	1.2	8.2	0.1	8.4
SDDSC138	294.6	297.9	3.3	24.6	5.0	34.1
including	294.6	296.4	1.8	44.8	9.3	62.3
SDDSC138	302.5	303.5	1.0	0.7	1.2	2.9
SDDSC138	311.0	323.9	12.9	4.5	1.6	7.4
including	311.0	311.4	0.4	16.4	2.1	20.3
including	313.0	314.6	1.6	7.9	2.1	11.9
including	316.9	320.0	3.1	11.3	4.7	20.2
SDDSC138	336.2	339.2	3.0	2.8	0.2	3.1
including	337.7	338.7	1.0	5.2	0.1	5.5
SDDSC138	351.6	358.5	6.9	2.1	0.6	3.2
including	354.0	356.0	2.0	4.0	0.7	5.3
SDDSC138	367.5	372.2	4.7	0.9	0.1	1.1
SDDSC138	380.9	381.6	0.7	1.1	1.4	3.7
SDDSC138	386.1	388.5	2.4	1.1	0.3	1.7
SDDSC138	398.3	399.7	1.4	2.9	0.4	3.7
SDDSC138	402.3	402.9	0.6	2.9	0.4	3.6
SDDSC138	405.2	409.7	4.5	3.2	0.4	3.9

including	408.2	409.3	1.1	9.9	0.5	10.8
SDDSC138	414.0	424.5	10.5	4.2	1.1	6.2
including	414.0	415.8	1.8	6.7	1.6	9.7
including	417.0	417.2	0.2	78.2	1.0	80.1
including	421.8	424.5	2.7	3.9	1.9	7.5
SDDSC138	427.6	428.7	1.1	12.9	2.4	17.4
SDDSC138	434.4	435.2	0.8	0.5	1.3	3.0
SDDSC138	439.3	442.8	3.5	0.4	0.5	1.3
SDDSC138	445.0	446.7	1.7	38.3	1.8	41.7
SDDSC138	453.4	461.9	8.5	1.7	1.7	4.8
including	456.7	457.2	0.5	9.7	6.6	22.2
including	458.6	459.5	0.9	3.2	10.4	22.8

Table 3: All individual assays reported from SDDSC132 and 138 reported here >0.1g/t AuEq.

Hole number	From (m)	To (m)	Length (m)	Au ppm	Sb%	AuEq (g/t)
SDDSC132	34.4	35.6	1.2	0.2	0.0	0.2
SDDSC132	124.0	124.6	0.7	0.2	0.0	0.2
SDDSC132	124.6	125.3	0.6	0.2	0.0	0.2
SDDSC132	125.3	126.0	0.7	0.2	0.0	0.2
SDDSC132	126.0	126.8	0.8	6.5	0.0	6.5
SDDSC132	126.8	127.3	0.5	0.2	0.0	0.2
SDDSC132	127.3	127.9	0.5	0.1	0.0	0.1
SDDSC132	127.9	128.4	0.5	0.7	0.0	0.7
SDDSC132	140.8	141.2	0.4	0.1	0.0	0.1
SDDSC132	145.8	146.2	0.4	0.9	0.0	0.9
SDDSC132	146.2	146.4	0.2	3.9	0.1	4.2
SDDSC132	146.4	146.7	0.3	77.0	17.6	110.1
SDDSC132	146.7	146.9	0.2	0.7	0.0	0.7
SDDSC132	146.9	147.4	0.5	0.3	0.0	0.3
SDDSC132	148.0	148.5	0.4	20.9	0.0	21.0
SDDSC132	148.5	148.6	0.1	0.1	0.0	0.1
SDDSC132	148.6	149.1	0.5	0.1	0.0	0.2
SDDSC132	149.1	149.5	0.4	0.3	0.0	0.4
SDDSC132	149.5	150.0	0.6	0.1	0.0	0.1
SDDSC132	151.2	151.6	0.5	1.0	0.0	1.1
SDDSC132	151.6	152.0	0.4	1.1	0.0	1.1
SDDSC132	152.0	152.8	0.8	0.2	0.0	0.2
SDDSC132	152.8	153.2	0.5	0.1	0.0	0.2
SDDSC132	153.2	153.4	0.2	1.9	0.6	3.0
SDDSC132	153.4	154.0	0.6	0.1	0.0	0.1
SDDSC132	154.0	154.4	0.4	1.4	0.4	2.1
SDDSC132	154.4	154.5	0.1	2.2	6.6	14.6
SDDSC132	154.5	155.0	0.5	0.8	0.1	1.0
SDDSC132	155.0	156.2	1.2	0.2	0.0	0.2
SDDSC132	156.2	156.4	0.2	0.5	0.0	0.5
SDDSC132	156.4	157.1	0.7	0.2	0.0	0.2
SDDSC132	157.1	157.5	0.4	0.9	0.0	1.0
SDDSC132	157.5	158.5	1.0	0.1	0.0	0.1
SDDSC132	158.5	159.5	1.0	0.2	0.0	0.2
SDDSC132	159.5	160.5	1.0	0.4	0.0	0.4
SDDSC132	160.5	161.3	0.8	0.4	0.0	0.4
SDDSC132	161.3	161.7	0.4	0.6	0.0	0.6
SDDSC132	161.7	162.1	0.4	0.8	0.0	0.8

SDDSC132	162.1	162.2	0.1	2.2	0.0	2.2
SDDSC132	162.2	162.6	0.4	0.5	0.0	0.5
SDDSC132	162.6	163.2	0.6	2.0	0.0	2.0
SDDSC132	163.2	163.3	0.2	4.4	0.0	4.4
SDDSC132	163.3	163.8	0.5	3.6	0.0	3.6
SDDSC132	166.0	166.6	0.6	0.3	0.0	0.3
SDDSC132	166.6	166.9	0.3	1.3	0.0	1.3
SDDSC132	166.9	167.2	0.3	2.4	0.0	2.4
SDDSC132	167.2	167.6	0.4	0.8	0.0	0.8
SDDSC132	167.6	168.4	0.8	0.2	0.0	0.2
SDDSC132	170.0	170.8	0.8	0.1	0.0	0.1
SDDSC132	170.8	171.0	0.2	1.0	0.5	1.9
SDDSC132	171.7	172.1	0.4	0.4	0.0	0.4
SDDSC132	172.1	172.4	0.3	15.3	0.6	16.5
SDDSC132	172.4	173.3	0.9	0.2	0.0	0.2
SDDSC132	176.5	176.6	0.1	0.7	0.1	0.9
SDDSC132	176.6	176.9	0.2	7.1	0.3	7.7
SDDSC132	177.7	178.4	0.7	0.1	0.0	0.1
SDDSC132	178.4	178.7	0.4	0.5	0.0	0.5
SDDSC132	178.7	179.3	0.6	0.3	0.0	0.4
SDDSC132	180.3	180.6	0.3	0.9	0.0	0.9
SDDSC132	184.5	185.0	0.5	0.2	0.0	0.2
SDDSC132	185.4	186.0	0.6	0.2	0.0	0.2
SDDSC132	186.6	186.8	0.1	28.5	15.6	57.8
SDDSC132	186.8	187.7	0.9	0.2	0.0	0.3
SDDSC132	187.7	188.2	0.5	0.3	0.0	0.3
SDDSC132	188.2	189.0	0.9	4.2	0.0	4.2
SDDSC132	189.0	190.1	1.1	1.7	0.1	1.8
SDDSC132	193.2	193.4	0.2	1.1	0.0	1.1
SDDSC132	193.4	193.9	0.6	0.4	0.0	0.4
SDDSC132	194.7	195.2	0.5	0.3	0.0	0.3
SDDSC132	195.2	195.7	0.6	0.1	0.0	0.1
SDDSC132	196.9	197.3	0.4	3.7	0.0	3.7
SDDSC132	460.2	460.8	0.6	0.6	0.0	0.6
SDDSC132	460.8	461.5	0.7	0.1	0.0	0.1
SDDSC132	461.5	461.9	0.3	0.1	0.0	0.2
SDDSC132	461.9	462.3	0.4	0.2	0.1	0.3
SDDSC132	475.0	475.2	0.2	0.1	0.0	0.1
SDDSC132	493.0	493.6	0.6	0.1	0.0	0.2
SDDSC132	515.9	516.6	0.7	0.2	0.0	0.2
SDDSC132	516.6	516.8	0.2	0.0	1.0	1.9

SDDSC132	532.7	533.3	0.7	0.3	0.0	0.3
SDDSC132	533.3	533.8	0.4	0.3	0.1	0.5
SDDSC132	533.8	534.3	0.5	0.1	0.3	0.6
SDDSC132	534.3	535.0	0.7	2.4	0.2	2.8
SDDSC132	535.0	535.2	0.2	4.5	1.1	6.5
SDDSC132	535.2	536.0	0.9	0.9	0.1	1.2
SDDSC132	536.0	537.1	1.1	0.2	0.0	0.3
SDDSC132	538.1	538.2	0.1	2.4	0.4	3.2
SDDSC132	538.2	538.6	0.4	0.1	0.0	0.2
SDDSC132	538.6	538.7	0.2	0.7	0.3	1.3
SDDSC132	539.8	540.3	0.4	0.2	0.1	0.4
SDDSC132	540.3	540.4	0.2	0.3	0.2	0.6
SDDSC132	540.4	541.3	0.8	0.4	0.0	0.4
SDDSC132	541.9	542.4	0.5	0.5	0.3	1.1
SDDSC132	542.4	543.2	0.8	0.2	0.0	0.2
SDDSC132	543.2	543.3	0.1	28.7	0.0	28.8
SDDSC132	543.3	543.8	0.5	0.2	0.0	0.2
SDDSC132	543.8	544.2	0.4	8.7	0.3	9.3
SDDSC132	544.2	544.4	0.2	2.5	0.2	2.8
SDDSC132	544.4	545.2	0.8	0.7	0.2	1.1
SDDSC132	545.2	545.4	0.2	61.2	0.2	61.6
SDDSC132	545.4	545.8	0.5	1.1	10.4	20.7
SDDSC132	545.8	546.6	0.8	0.3	0.1	0.4
SDDSC132	546.6	547.2	0.6	0.1	0.1	0.2
SDDSC132	547.2	547.5	0.3	0.6	0.4	1.4
SDDSC132	547.5	548.0	0.6	0.1	0.0	0.1
SDDSC132	548.0	548.4	0.4	0.9	1.2	3.1
SDDSC132	548.4	549.0	0.6	0.1	0.1	0.3
SDDSC132	549.0	549.9	0.9	0.2	0.4	1.0
SDDSC132	549.9	550.8	0.9	0.1	0.0	0.1
SDDSC132	550.8	550.9	0.1	3.1	1.4	5.7
SDDSC132	550.9	551.5	0.6	0.3	0.4	1.0
SDDSC132	551.5	551.9	0.4	2.4	1.7	5.5
SDDSC132	551.9	552.4	0.5	5.2	0.8	6.6
SDDSC132	552.4	552.6	0.2	7.1	0.7	8.4
SDDSC132	552.6	553.2	0.7	0.1	0.1	0.2
SDDSC132	553.2	554.0	0.8	0.2	0.1	0.4
SDDSC132	554.0	554.2	0.2	18.3	0.1	18.6
SDDSC132	554.2	554.4	0.2	13.3	0.2	13.7
SDDSC132	554.4	555.1	0.8	0.2	0.1	0.4
SDDSC132	555.1	556.3	1.2	0.0	0.1	0.1

SDDSC132	556.3	557.1	0.8	0.1	0.0	0.1
SDDSC132	565.1	565.8	0.7	0.3	0.0	0.3
SDDSC132	565.8	566.0	0.3	2.9	0.0	2.9
SDDSC132	566.0	567.2	1.2	0.3	0.0	0.3
SDDSC132	570.2	570.5	0.3	1.2	0.1	1.4
SDDSC132	570.5	571.3	0.8	0.1	0.0	0.1
SDDSC132	571.3	571.6	0.4	0.1	0.0	0.2
SDDSC132	571.6	572.0	0.4	1.2	1.0	3.1
SDDSC132	572.0	572.5	0.5	0.9	0.0	1.0
SDDSC132	572.5	572.7	0.2	1.4	0.1	1.5
SDDSC132	572.7	573.3	0.7	0.3	0.0	0.4
SDDSC132	573.3	573.8	0.5	1.0	0.4	1.8
SDDSC132	573.8	574.4	0.6	0.3	0.0	0.3
SDDSC132	574.4	574.6	0.1	0.7	0.0	0.8
SDDSC132	577.2	578.2	1.0	0.5	0.1	0.6
SDDSC132	579.2	580.2	1.0	0.2	0.0	0.2
SDDSC132	580.2	580.4	0.2	0.6	0.9	2.3
SDDSC132	584.3	584.4	0.1	1.0	0.5	1.9
SDDSC132	584.4	585.0	0.5	0.1	0.0	0.1
SDDSC132	585.0	585.9	1.0	0.3	0.2	0.7
SDDSC132	585.9	586.4	0.5	0.1	0.0	0.2
SDDSC132	586.4	587.1	0.7	0.5	0.1	0.6
SDDSC132	587.1	587.4	0.3	0.4	0.2	0.8
SDDSC132	587.4	587.7	0.3	0.5	0.1	0.6
SDDSC132	587.7	588.5	0.9	0.1	0.2	0.5
SDDSC132	588.5	588.7	0.2	1.0	6.5	13.2
SDDSC132	588.7	589.7	1.0	0.1	0.0	0.2
SDDSC132	589.7	589.9	0.2	0.7	0.8	2.3
SDDSC132	591.8	592.0	0.2	0.1	0.0	0.2
SDDSC132	592.0	592.6	0.5	0.5	0.1	0.6
SDDSC132	592.6	593.5	0.9	0.5	0.0	0.5
SDDSC132	606.8	607.1	0.3	0.2	0.4	0.9
SDDSC132	609.0	609.9	0.9	0.1	0.0	0.2
SDDSC132	609.9	610.3	0.4	0.6	0.2	0.8
SDDSC132	610.3	611.0	0.7	1.7	0.6	2.9
SDDSC132	611.0	611.3	0.3	0.5	0.1	0.6
SDDSC132	611.3	611.9	0.6	0.1	0.0	0.2
SDDSC132	611.9	612.7	0.8	0.0	0.2	0.4
SDDSC132	613.8	614.2	0.4	0.1	0.1	0.2
SDDSC132	616.4	617.0	0.6	1.5	0.0	1.6
SDDSC132	617.7	618.1	0.4	0.2	0.0	0.2

SDDSC132	618.1	618.5	0.5	0.1	0.1	0.4
SDDSC132	618.5	618.7	0.2	0.1	0.1	0.2
SDDSC132	618.7	619.8	1.1	0.2	0.0	0.3
SDDSC132	628.6	629.0	0.4	0.1	0.0	0.1
SDDSC132	629.0	630.0	1.0	0.0	0.0	0.1
SDDSC132	633.5	633.6	0.2	0.5	0.4	1.2
SDDSC132	634.9	635.0	0.1	1.8	0.2	2.0
SDDSC132	635.0	635.6	0.6	0.2	0.2	0.5
SDDSC132	636.4	637.1	0.7	0.1	0.0	0.2
SDDSC132	638.2	639.1	0.9	0.1	0.0	0.2
SDDSC132	650.2	650.3	0.2	1.3	0.0	1.3
SDDSC138	39.9	40.8	0.9	0.3	0.0	0.3
SDDSC138	40.8	41.8	1.0	0.2	0.0	0.3
SDDSC138	41.8	43.1	1.3	0.2	0.0	0.2
SDDSC138	54.1	55.1	1.0	0.2	0.0	0.2
SDDSC138	73.8	74.8	1.0	0.1	0.0	0.1
SDDSC138	74.8	75.5	0.7	0.2	0.0	0.2
SDDSC138	79.9	80.9	1.0	0.1	0.0	0.1
SDDSC138	131.8	131.9	0.2	0.2	0.2	0.5
SDDSC138	131.9	132.0	0.1	77.5	23.8	122.2
SDDSC138	132.0	132.3	0.2	1.8	0.1	1.9
SDDSC138	132.3	133.0	0.7	0.4	0.0	0.4
SDDSC138	133.0	133.9	0.9	0.8	0.0	0.9
SDDSC138	133.9	134.1	0.3	0.1	0.0	0.1
SDDSC138	134.5	135.3	0.8	0.4	0.0	0.4
SDDSC138	135.3	135.6	0.3	1.0	0.3	1.5
SDDSC138	135.6	135.9	0.3	2.6	0.0	2.6
SDDSC138	135.9	136.0	0.1	1.3	0.0	1.3
SDDSC138	136.0	136.5	0.5	0.3	0.0	0.3
SDDSC138	136.5	137.0	0.5	0.2	0.0	0.2
SDDSC138	138.0	138.9	0.9	0.1	0.0	0.2
SDDSC138	138.9	139.1	0.2	0.8	0.2	1.2
SDDSC138	139.1	139.5	0.5	0.2	0.0	0.2
SDDSC138	139.5	139.9	0.4	0.2	0.1	0.3
SDDSC138	143.0	143.2	0.2	0.1	0.0	0.1
SDDSC138	143.2	143.3	0.1	0.6	7.1	14.0
SDDSC138	143.3	143.6	0.3	0.4	0.0	0.4
SDDSC138	143.6	144.7	1.0	0.2	0.0	0.3
SDDSC138	144.7	145.1	0.4	2.0	1.1	4.0
SDDSC138	145.1	145.8	0.7	0.4	0.0	0.4
SDDSC138	148.6	148.8	0.2	0.3	0.0	0.4

SDDSC138	267.7	269.0	1.3	0.3	0.0	0.3
SDDSC138	271.6	272.8	1.2	0.3	0.0	0.3
SDDSC138	279.0	279.8	0.8	0.4	0.0	0.4
SDDSC138	279.8	281.0	1.3	0.2	0.0	0.2
SDDSC138	281.0	281.8	0.8	0.2	0.0	0.2
SDDSC138	284.7	285.0	0.3	0.4	0.1	0.6
SDDSC138	285.0	285.9	0.9	0.1	0.0	0.1
SDDSC138	285.9	286.4	0.5	5.3	0.0	5.4
SDDSC138	286.4	286.6	0.2	6.5	0.4	7.2
SDDSC138	286.6	287.1	0.5	11.7	0.0	11.8
SDDSC138	287.1	288.2	1.1	0.4	0.0	0.4
SDDSC138	288.2	288.8	0.6	0.2	0.0	0.2
SDDSC138	294.6	294.9	0.3	180.0	26.3	229.4
SDDSC138	294.9	295.5	0.5	2.8	1.1	4.8
SDDSC138	295.5	295.8	0.3	62.6	23.0	105.8
SDDSC138	295.8	296.3	0.5	0.7	0.3	1.3
SDDSC138	296.3	296.4	0.1	5.6	0.0	5.6
SDDSC138	296.4	297.1	0.7	0.7	0.0	0.7
SDDSC138	297.1	297.6	0.5	0.3	0.0	0.3
SDDSC138	297.6	298.0	0.3	3.0	0.0	3.0
SDDSC138	298.0	298.6	0.7	0.4	0.0	0.4
SDDSC138	298.6	299.5	0.8	0.1	0.0	0.1
SDDSC138	302.5	303.2	0.7	0.7	1.6	3.7
SDDSC138	303.2	303.5	0.3	0.7	0.2	1.0
SDDSC138	303.5	303.7	0.2	0.2	0.4	1.0
SDDSC138	306.7	306.8	0.1	0.5	0.0	0.6
SDDSC138	306.8	307.6	0.8	0.2	0.0	0.2
SDDSC138	308.5	309.8	1.3	0.2	0.0	0.2
SDDSC138	309.8	310.3	0.5	0.4	0.0	0.4
SDDSC138	310.3	311.0	0.7	0.1	0.0	0.1
SDDSC138	311.0	311.4	0.4	16.4	2.1	20.4
SDDSC138	311.4	312.1	0.7	0.4	0.1	0.5
SDDSC138	313.0	313.1	0.1	62.4	8.7	78.7
SDDSC138	313.1	314.0	0.9	0.3	0.0	0.4
SDDSC138	314.0	314.2	0.2	2.3	4.4	10.5
SDDSC138	314.2	314.4	0.2	4.4	1.5	7.1
SDDSC138	314.4	314.5	0.1	17.8	9.0	34.8
SDDSC138	314.5	315.0	0.5	2.7	0.4	3.4
SDDSC138	315.0	315.6	0.6	1.2	0.6	2.2
SDDSC138	315.6	315.8	0.2	1.9	0.9	3.5
SDDSC138	315.8	316.5	0.6	0.2	0.2	0.6

SDDSC138	316.5	316.9	0.5	0.2	0.4	1.1
SDDSC138	316.9	317.2	0.2	44.8	33.8	108.3
SDDSC138	317.2	317.6	0.4	3.5	3.6	10.3
SDDSC138	317.6	317.8	0.2	60.6	9.2	77.9
SDDSC138	317.8	318.4	0.6	0.6	0.2	1.0
SDDSC138	318.4	319.0	0.6	3.8	1.5	6.6
SDDSC138	319.0	319.1	0.1	51.1	10.6	71.0
SDDSC138	319.1	319.2	0.1	3.5	2.3	7.9
SDDSC138	319.2	319.6	0.4	0.2	0.1	0.4
SDDSC138	319.6	320.0	0.4	4.1	2.1	8.0
SDDSC138	320.0	320.3	0.3	0.7	0.3	1.4
SDDSC138	320.3	320.7	0.3	0.1	0.0	0.2
SDDSC138	320.7	321.8	1.1	0.2	0.0	0.2
SDDSC138	321.8	322.8	1.1	1.2	0.1	1.3
SDDSC138	322.8	322.9	0.1	0.9	3.3	7.0
SDDSC138	323.6	323.9	0.3	0.7	0.3	1.3
SDDSC138	324.8	325.1	0.2	0.1	0.0	0.1
SDDSC138	326.3	327.3	1.0	0.1	0.0	0.1
SDDSC138	328.1	328.5	0.5	1.8	0.5	2.7
SDDSC138	328.5	328.9	0.4	0.4	0.1	0.6
SDDSC138	329.5	330.0	0.5	0.3	0.0	0.3
SDDSC138	332.3	332.4	0.1	0.3	0.0	0.3
SDDSC138	335.0	335.3	0.3	0.3	0.0	0.4
SDDSC138	336.2	336.9	0.7	0.7	0.5	1.6
SDDSC138	336.9	337.7	0.8	0.2	0.1	0.5
SDDSC138	337.7	338.6	1.0	5.2	0.1	5.5
SDDSC138	338.6	339.2	0.6	4.7	0.0	4.7
SDDSC138	339.2	340.0	0.8	0.6	0.0	0.6
SDDSC138	340.0	341.0	1.0	0.2	0.1	0.3
SDDSC138	341.0	342.1	1.1	0.3	0.1	0.4
SDDSC138	342.1	342.3	0.2	0.4	0.6	1.4
SDDSC138	342.3	343.3	1.0	0.1	0.0	0.2
SDDSC138	345.6	345.9	0.4	0.9	0.1	1.2
SDDSC138	347.2	347.4	0.2	0.3	0.1	0.4
SDDSC138	348.5	348.7	0.2	2.3	0.0	2.3
SDDSC138	350.0	350.3	0.3	0.2	0.2	0.6
SDDSC138	350.3	351.3	1.0	0.2	0.0	0.2
SDDSC138	351.3	351.6	0.3	0.4	0.2	0.7
SDDSC138	351.6	352.6	1.0	1.1	0.5	2.1
SDDSC138	352.6	353.0	0.4	6.0	1.8	9.4
SDDSC138	353.0	353.6	0.7	1.9	0.4	2.7

SDDSC138	353.6	354.0	0.4	1.8	1.3	4.3
SDDSC138	354.0	354.7	0.7	3.7	1.4	6.2
SDDSC138	354.7	355.4	0.7	1.9	0.2	2.4
SDDSC138	355.4	355.7	0.3	2.8	0.8	4.3
SDDSC138	355.7	356.0	0.3	10.6	0.3	11.2
SDDSC138	356.0	356.6	0.6	0.5	0.3	1.1
SDDSC138	356.6	357.3	0.7	0.9	0.3	1.6
SDDSC138	357.3	358.3	1.0	0.1	0.0	0.1
SDDSC138	358.3	358.5	0.2	0.8	0.3	1.4
SDDSC138	358.5	359.4	0.9	0.3	0.1	0.4
SDDSC138	360.6	361.0	0.4	0.7	0.1	0.8
SDDSC138	361.0	361.5	0.5	0.6	0.0	0.7
SDDSC138	361.5	362.1	0.6	0.4	0.3	0.9
SDDSC138	362.1	362.7	0.6	0.9	0.2	1.2
SDDSC138	362.7	362.9	0.3	1.0	0.2	1.4
SDDSC138	362.9	364.1	1.1	0.3	0.4	1.0
SDDSC138	366.2	367.1	1.0	0.3	0.0	0.4
SDDSC138	367.1	367.5	0.3	0.4	0.2	0.7
SDDSC138	367.5	367.9	0.4	0.6	0.3	1.2
SDDSC138	367.9	368.0	0.1	13.9	0.8	15.5
SDDSC138	368.6	369.5	0.9	0.1	0.0	0.2
SDDSC138	369.5	370.2	0.7	2.9	0.3	3.4
SDDSC138	371.9	372.2	0.3	1.5	0.0	1.6
SDDSC138	372.2	373.2	1.0	0.1	0.0	0.1
SDDSC138	373.2	374.2	1.0	0.2	0.0	0.2
SDDSC138	375.8	376.5	0.7	0.3	0.0	0.3
SDDSC138	376.5	376.7	0.2	1.8	0.1	2.0
SDDSC138	376.7	377.0	0.3	2.0	0.1	2.2
SDDSC138	377.5	378.3	0.8	0.5	0.0	0.6
SDDSC138	378.3	379.2	1.0	0.3	0.1	0.4
SDDSC138	379.2	380.0	0.8	0.5	0.0	0.6
SDDSC138	380.0	380.6	0.6	0.3	0.4	1.0
SDDSC138	380.6	380.9	0.3	0.8	0.1	1.0
SDDSC138	380.9	381.6	0.7	1.1	1.4	3.7
SDDSC138	386.1	386.9	0.8	0.7	0.3	1.3
SDDSC138	386.9	387.6	0.8	0.3	0.0	0.4
SDDSC138	387.6	387.7	0.1	9.1	3.6	15.8
SDDSC138	387.7	388.5	0.8	1.1	0.2	1.5
SDDSC138	388.5	388.9	0.4	0.2	0.0	0.2
SDDSC138	392.0	393.0	1.0	0.2	0.0	0.3
SDDSC138	393.0	394.1	1.1	0.1	0.0	0.1

SDDSC138	395.2	396.3	1.1	0.3	0.0	0.3
SDDSC138	397.0	397.6	0.6	0.3	0.0	0.3
SDDSC138	397.6	398.3	0.7	0.6	0.0	0.6
SDDSC138	398.3	398.8	0.5	6.2	0.3	6.7
SDDSC138	398.8	399.2	0.4	1.0	0.2	1.3
SDDSC138	399.2	399.8	0.5	1.3	0.8	2.8
SDDSC138	400.0	400.1	0.1	0.4	0.0	0.4
SDDSC138	400.1	400.3	0.2	0.6	0.2	0.9
SDDSC138	400.3	401.3	1.0	0.3	0.1	0.4
SDDSC138	401.3	402.3	1.0	0.3	0.0	0.3
SDDSC138	402.3	402.9	0.5	3.2	0.4	3.9
SDDSC138	402.9	403.0	0.1	1.2	0.5	2.2
SDDSC138	403.0	403.4	0.4	0.3	0.0	0.4
SDDSC138	404.0	404.3	0.2	0.4	0.1	0.6
SDDSC138	404.3	405.2	0.9	0.1	0.0	0.2
SDDSC138	405.2	405.6	0.4	2.3	0.2	2.7
SDDSC138	405.6	406.0	0.4	1.1	1.4	3.8
SDDSC138	406.5	407.5	1.0	0.4	0.2	0.7
SDDSC138	407.5	408.2	0.8	0.8	0.2	1.2
SDDSC138	408.2	408.4	0.2	35.6	1.2	37.9
SDDSC138	408.4	408.7	0.3	0.8	0.4	1.6
SDDSC138	408.7	409.3	0.6	0.1	0.0	0.2
SDDSC138	409.3	409.4	0.1	49.5	1.8	52.8
SDDSC138	409.4	409.7	0.3	1.5	1.0	3.3
SDDSC138	409.7	410.2	0.5	0.1	0.0	0.1
SDDSC138	410.2	410.7	0.5	0.2	0.1	0.3
SDDSC138	410.7	411.6	0.9	0.6	0.0	0.7
SDDSC138	413.3	414.0	0.7	0.1	0.0	0.1
SDDSC138	414.0	414.4	0.4	17.4	1.4	20.1
SDDSC138	414.4	414.6	0.2	4.5	0.4	5.4
SDDSC138	414.6	415.1	0.5	2.7	0.9	4.5
SDDSC138	415.1	415.4	0.3	7.2	5.2	16.9
SDDSC138	415.4	415.7	0.3	1.8	0.1	2.0
SDDSC138	415.7	415.8	0.1	2.6	1.9	6.2
SDDSC138	415.8	416.3	0.5	1.0	0.6	2.0
SDDSC138	416.3	416.6	0.3	2.5	0.3	3.1
SDDSC138	416.6	417.0	0.3	0.8	0.1	1.0
SDDSC138	417.0	417.1	0.1	141.0	1.6	144.1
SDDSC138	417.1	417.2	0.1	15.4	0.4	16.1
SDDSC138	417.2	418.0	0.8	0.2	0.0	0.3
SDDSC138	418.0	418.2	0.2	0.4	0.1	0.6

SDDSC138	418.2	418.4	0.1	1.7	0.9	3.3
SDDSC138	418.4	419.3	0.9	0.6	0.1	0.7
SDDSC138	419.3	420.1	0.8	0.3	0.1	0.5
SDDSC138	420.1	420.4	0.3	2.3	1.7	5.6
SDDSC138	420.4	420.5	0.1	6.6	6.7	19.3
SDDSC138	420.5	420.9	0.4	1.0	1.4	3.7
SDDSC138	420.9	421.8	0.9	0.8	0.1	1.0
SDDSC138	421.8	421.9	0.1	6.7	11.2	27.8
SDDSC138	421.9	422.3	0.4	0.4	0.2	0.8
SDDSC138	422.3	422.7	0.4	6.6	4.5	15.1
SDDSC138	422.7	423.4	0.7	6.5	1.5	9.4
SDDSC138	423.4	423.9	0.5	1.2	0.8	2.7
SDDSC138	423.9	424.4	0.6	0.3	0.1	0.4
SDDSC138	424.4	424.5	0.1	15.9	6.9	28.8
SDDSC138	424.5	425.5	1.0	0.1	0.1	0.2
SDDSC138	426.7	427.6	0.9	0.1	0.0	0.1
SDDSC138	427.6	427.7	0.1	79.2	6.2	90.9
SDDSC138	427.7	427.9	0.3	0.4	0.1	0.5
SDDSC138	427.9	428.5	0.5	3.6	0.3	4.1
SDDSC138	428.5	428.6	0.2	25.6	11.3	46.8
SDDSC138	428.6	429.2	0.6	0.2	0.0	0.3
SDDSC138	429.2	430.2	0.9	0.3	0.1	0.4
SDDSC138	430.2	431.0	0.8	0.1	0.1	0.2
SDDSC138	433.0	434.0	1.0	0.2	0.0	0.2
SDDSC138	434.0	434.4	0.4	0.6	0.0	0.6
SDDSC138	434.4	434.6	0.2	1.4	0.0	1.4
SDDSC138	434.6	435.1	0.6	0.2	0.0	0.2
SDDSC138	435.1	435.2	0.1	0.9	11.1	21.7
SDDSC138	435.2	436.3	1.1	0.1	0.3	0.6
SDDSC138	439.3	440.0	0.7	1.5	0.1	1.7
SDDSC138	441.0	441.2	0.2	1.6	0.3	2.0
SDDSC138	441.2	441.5	0.4	0.3	0.0	0.4
SDDSC138	442.2	442.8	0.6	0.1	2.6	5.0
SDDSC138	442.8	443.8	1.0	0.0	0.2	0.4
SDDSC138	445.0	445.2	0.2	36.6	0.1	36.7
SDDSC138	445.2	445.3	0.1	47.2	1.0	49.0
SDDSC138	445.3	446.0	0.7	1.5	0.2	1.8
SDDSC138	446.0	446.4	0.4	5.9	0.2	6.3
SDDSC138	446.4	446.7	0.3	183.0	10.8	203.3
SDDSC138	446.7	447.2	0.6	0.3	0.2	0.6
SDDSC138	447.2	448.2	0.9	0.1	0.0	0.1

SDDSC138	448.2	449.3	1.2	0.3	0.0	0.3
SDDSC138	449.3	450.3	1.0	0.1	0.1	0.2
SDDSC138	453.4	453.6	0.2	0.8	0.3	1.3
SDDSC138	453.6	453.7	0.1	0.4	0.4	1.1
SDDSC138	453.7	454.3	0.5	0.6	0.2	1.0
SDDSC138	454.3	455.2	0.9	0.6	0.1	0.7
SDDSC138	455.2	455.5	0.3	2.3	0.8	3.8
SDDSC138	455.5	456.7	1.3	0.2	0.0	0.2
SDDSC138	456.7	456.9	0.2	18.4	22.2	60.1
SDDSC138	456.9	457.1	0.2	0.3	0.1	0.5
SDDSC138	457.1	457.2	0.1	17.7	0.2	18.1
SDDSC138	457.2	457.8	0.5	2.6	0.9	4.3
SDDSC138	457.8	458.6	0.8	1.7	0.6	2.7
SDDSC138	458.6	458.8	0.3	2.3	17.2	34.6
SDDSC138	458.8	459.4	0.6	3.5	7.5	17.7
SDDSC138	459.4	460.1	0.7	0.8	0.0	0.9
SDDSC138	460.1	460.5	0.4	2.2	0.2	2.6
SDDSC138	460.5	461.0	0.6	0.5	0.0	0.6
SDDSC138	461.0	461.3	0.3	1.4	0.0	1.4
SDDSC138	461.3	461.7	0.4	0.1	0.0	0.2
SDDSC138	461.7	461.9	0.2	1.1	0.1	1.3
SDDSC138	462.9	464.0	1.1	0.3	0.0	0.3
SDDSC138	466.7	466.9	0.2	0.1	0.0	0.1
SDDSC138	468.1	469.1	1.0	0.1	0.0	0.2
SDDSC138	469.1	470.1	1.0	0.0	0.0	0.1
SDDSC138	470.1	470.5	0.4	0.1	0.1	0.3
SDDSC138	470.5	471.7	1.2	0.4	0.0	0.5
SDDSC138	471.7	471.8	0.1	0.5	1.0	2.4