

NEWS RELEASE

December 18, 2024

SXG DRILLS 242 METRES @ 6.0 g/t GOLD (UNCUT) TRAVERSING 8 HIGH-GRADE VEINS IN DOWN DIP EXTENSION AT SUNDAY CREEK

Including 3.6 m @ 114.6 g/t Gold and 0.16 m @ 3,330 g/t Gold

Vancouver, Canada — <u>Mawson Gold Limited</u> ("Mawson" or the "Company") (TSXV:MAW) (Frankfurt:MXR) (PINKSHEETS: MWSNF) announces Southern Cross Gold Ltd. ("Southern Cross Gold" or "SXG") has released results from two drill holes from the Rising Sun prospect at its 100%-owned Sunday Creek Gold-Antimony Project in Victoria.

High Level Take Away:

Southern Cross Gold's latest drilling results from the Sunday Creek Project in Victoria demonstrate the project's expanding high-grade potential and size adding **four new >100 g/t AuEq * m** intercepts to the project within a single drill hole. Drill hole SDDSC144 delivered exceptional results with **242.1 m @ 6.0 g/t gold (uncut)**, including multiple bonanza-grade intersections across eight distinct high-grade vein sets. Most notably, the hole produced one of the project's highest-grade intersections to date: **0.16 m at 3,352.0 g/t AuEq (3,330.0 g/t Au, 11.7% Sb)**, ranking as the seventh-best composite interval in project history and **3.6 m @ 117.3 g/t AuEq** (114.6 g/t Au, 1.4% Sb).

Of equal significance, SDDSC129, the **deepest hole drilled to date at Sunday Creek** (1,269.8 m), successfully extended known mineralisation and served as a crucial control hole for SDDSC144. The hole's high-grade intersection at 1,238.6 m (1.5 m @ 21.5 g/t AuEq) proves mineralisation extends 100 m down-dip from previous intersections. This depth extension, combined with the project's improving predictability of high-grade intersections, suggests significant exploration upside remains.

The results reinforce the conclusion that Sunday Creek has become a very significant epizonal gold-antimony system, similar to other major Victorian deposits such as Fosterville and Costerfield. With antimony recognised as a critical mineral by major economies and China recently imposing export restrictions, Sunday Creek's antimony content (which represents approximately 20% of in-situ recoverable value) adds strategic importance to the project. The Company's systematic drill program, currently employing five rigs with plans to drill 60,000 m through Q3 2025, continues to expand the known mineralisation along strike and at depth.

For Those Who Like the Details:

- SDDSC144 drilled 242.1 m @ 6.0 g/t gold (uncut) traversing eight high-grade vein sets and delivered the seventh best intercept on the Sunday Creek project, 0.16 m @ 3,352.0 g/t AuEq (3,330.0 g/t Au, 11.7% Sb). The hole included 10 intervals >100 g/t Au (up to 3,330.0 g/t Au), four intervals >2% Sb (up to 11.7% Sb) and added four new >100 g/t AuEq x m intercepts to the project. Selected highlights include:
 - o 15.7 m @ 12.0 g/t AuEq (11.4 g/t Au, 0.3% Sb) from 567.1 m, including:
 - 4.1 m @ 40.8 g/t AuEq (40.2 g/t Au, 0.3% Sb) from 568.9 m
 - 0.7 m @ 193.5 g/t AuEq (193.4 g/t Au, 0.1% Sb) from 609.3 m

- o **0.5 m @ 87.1 g/t AuEq** (84.8 g/t Au, 1.2% Sb) from 632.5 m, including:
 - 0.2 m @ 210.6 g/t AuEq (206.0 g/t Au, 2.5% Sb) from 632.5 m
- **5.8 m @ 4.8 g/t AuEq** (4.3 g/t Au, 0.3% Sb) from 659.4 m, including:
 - 0.4 m @ 56.8 g/t AuEq (56.1 g/t Au, 0.4% Sb) from 664.8 m
- **3.6 m @ 18.2 g/t AuEq** (18.2 g/t Au, 0.0% Sb) from 697.4 m including:
 - 1.2m @ 55.3 g/t AuEq (55.2 g/t Au, 0.1% Sb) from 697.4 m
- **3.6 m @ 117.3 g/t AuEq** (114.6 g/t Au, 1.4% Sb) from 748.8 m, including:
 - 0.6 m @ 653.6 g/t AuEq (639.8 g/t Au, 7.3% Sb) from 751.8 m
- **0.16 m @ 3,352.0 g/t AuEq** (3,330.0 g/t Au, 11.7% Sb) from 776.6 m
- **SDDSC129** is the deepest hole on the project at 1,269.8 m with high-grade mineralisation present at 1,238.6 m (1.5 m @ 21.5 g/t AuEq (21.5 g/t Au, 0.0% Sb). Selected highlights include:
 - o **0.8 m @ 8.4 g/t AuEq** (8.4 g/t Au, 0.0% Sb) from 890.7 m
 - o 0.9 m @ 4.9 g/t AuEq (4.9 g/t Au, 0.0% Sb) from 1,079.2 m
 - o **1.5 m @ 21.5 g/t AuEq** (21.5 g/t Au, 0.0% Sb) from 1,238.6 m, including:
 - 0.8 m @ 36.6 g/t AuEq (36.6 g/t Au, 0.0% Sb) from 1,239.3 m
- **Ongoing Exploration:** Thirteen holes are currently being processed and analysed, with five holes in progress (Figures 1 and 2).
- Mawson owns 96,590,910 shares of SXG (48.7%), valuing its stake at A\$379.6 million (C\$344.3 million) based on SXG's closing price on December 17, 2024 AEDT.

Michael Hudson, Mawson Interim CEO and Executive Chairman, states: "In a remarkable twomonth span, SXG has hit the ultimate year-end quadrella at Sunday Creek, delivering extraordinary highgrade intersections across four distinct prospect areas. The sequential discoveries showcase the deposit's expansive high-grade nature over more than 1 km, starting with Christina's 1.7 m @ 254.0 g/t AuEq (9th best intersection), followed by Golden Dyke's broad 5.5 m @ 26.1 g/t AuEq, then culminating in two bonanza-grade hits: Apollo's 0.5 m @ 2,544.0 g/t AuEq (4th best) and Rising Sun's 0.16 m @ 3,352.0 g/t AuEq (7th best). This success across multiple prospect areas, yielding three top ten intersections in the project's history, validates the robust nature of the mineralisation system and highlights the effectiveness of the company's structural targeting methodology in this high-grade epizonal goldantimony system.

"Today's results continue to demonstrate the exceptional high-grade nature and expanding scale of the Sunday Creek mineralised system. SDDSC144 has delivered outstanding results including 242.1 m at 6.0 g/t Au (uncut), traversing eight distinct high-grade vein sets. Most notably, SDDSC144 produced one of our highest-grade intersections to date with 0.16 m @ 3,330 g/t Au intersected within a deep high-grade zone of this impressive epizonal system. Many of the other 8 vein sets in the same drill hole reported wide and high-grade results including 4.1 m @ 40.2 g/t Au and 3.6 m @ 114.6 g/t Au. In addition, SDDSC129, our deepest hole to date at 1,270 m, successfully extended known mineralisation with significant high-grade gold intersections up to 100 m below previously drilled mineralisation.

"With five drill rigs currently operating and plans to drill 60,000 m through to Q3 2025, we are well-positioned to continue expanding this remarkable epizonal gold-antimony system, which grows more impressive with each new result."

Drill Hole Discussion

Results from drill holes **SDDSC129** and **SDDSC144** (Figures 1 and 2) are announced here from the Rising Sun prospect at the 100%-owned Sunday Creek Gold-Antimony Project in Victoria (Figure 4).

Drill hole SDDSC144 delivered outstanding results at Sunday Creek, intercepting multiple high-grade goldantimony veins across a 270 m prospective corridor. The hole, which was strategically drilled parallel to the dyke/breccia/altered sediment host and at a high angle to the mineralised vein sets, returned a **242.1 m** @ **6.0 g/t gold (uncut) traversing** eight distinct high-grade vein sets. Five vein sets represent down-dip extensions of 25 m to 55 m and three are infill intersections. Highlights included **3.6 m** @ **117.3 g/t AuEq** (114.6 g/t Au, 1.4% Sb) from 748.8 m (Photo 1) and most notably, the hole produced one of the project's highest-grade intersections to date, returning **0.16 m at 3,352.0 g/t AuEq** (3,330.0 g/t Au, 11.7% Sb) from 776.6 m (Photo 2), ranking as the seventh-best composite interval and containing the fourth-highest gold assay in the project's history.

The high-grade nature of mineralisation is further demonstrated by **ten intervals exceeding 100 g/t Au**, with values up to 3,330.0 g/t Au, and four intervals containing more than 2% antimony, reaching a maximum of 11.7% Sb. The hole has significantly contributed to the project's high-grade inventory, adding four new >100 g/t AuEq * m intercepts and one intersection in the 50 to 100 g/t AuEq * m range (at a 2.0 m @ 1.0 g/t AuEq cutoff), bringing the project total to fifty-four high-grade intersections.

These results continue to demonstrate the high-grade nature and expanding scale of the Sunday Creek mineralised system, with successful extensions of known mineralised shapes and the discovery of new high-grade vein sets within the exploration target area. Extended highlights for SDDSC144 include:

- 3.4 m @ 1.8 g/t AuEq (1.1 g/t Au, 0.3% Sb) from 545.3 m
- 6.3 m @ 2.5 g/t AuEq (1.7 g/t Au, 0.4% Sb) from 554.0 m
- 15.7 m @ 12.0 g/t AuEq (11.4 g/t Au, 0.3% Sb) from 567.1 m, including:

• **4.1 m @ 40.8 g/t AuEq** (40.2 g/t Au, 0.3% Sb) from 568.9 m

- 1.9 m @ 2.4 g/t AuEq (1.8 g/t Au, 0.3% Sb) from 591.7 m
- 1.0 m @ 4.0 g/t AuEq (3.9 g/t Au, 0.0% Sb) from 596.6 m
- 0.7 m @ 193.5 g/t AuEq (193.4 g/t Au, 0.1% Sb) from 609.3 m
- **0.5 m @ 87.1 g/t AuEq** (84.8 g/t Au, 1.2% Sb) from 632.5 m, including:
 - 0.2 m @ 210.6 g/t AuEq (206.0 g/t Au, 2.5% Sb) from 632.5 m
- 3.7 m @ 1.5 g/t AuEq (0.9 g/t Au, 0.3% Sb) from 638.0 m
- 0.5 m @ 7.7 g/t AuEq (7.6 g/t Au, 0.1% Sb) from 650.0 m
- 1.0 m @ 4.2 g/t AuEq (3.9 g/t Au, 0.2% Sb) from 656.0 m
- **5.8 m @ 4.8 g/t AuEq** (4.3 g/t Au, 0.3% Sb) from 659.4 m, including:
 - o **0.4 m @ 56.8 g/t AuEq** (56.1 g/t Au, 0.4% Sb) from 664.8 m
- **3.6 m @ 18.2 g/t AuEq** (18.2 g/t Au, 0.0% Sb) from 697.4 m, including:
 - o **1.2 m @ 55.3 g/t AuEq** (55.2 g/t Au, 0.1% Sb) from 697.4 m
- 1.2 m @ 2.7 g/t AuEq (2.5 g/t Au, 0.1% Sb) from 719.5 m
- 2.2 m @ 1.4 g/t AuEq (1.3 g/t Au, 0.0% Sb) from 733.9 m
- 2.8 m @ 0.8 g/t AuEq (0.7 g/t Au, 0.1% Sb) from 743.5 m
- 3.6 m @ 117.3 g/t AuEq (114.6 g/t Au, 1.4% Sb) from 748.8 m, including:
 - 0.6 m @ 653.6 g/t AuEq (639.8 g/t Au, 7.3% Sb) from 751.8 m
 - 0.16 m @ 3,352.0 g/t AuEq (3,330.0 g/t Au, 11.7% Sb) from 776.6 m

Drill hole SDDSC129 is the deepest hole (1,269.8 m) drilled to date at Sunday Creek, successfully extended known mineralisation. The hole served as a crucial control hole for SDDSC144, effectively defining the system's southern margins and leading to the discovery of high-grade mineralisation 30 m north of the subsequently drilled SDDSC144. Mineralisation remains open to the north of SDDSC144.

SDDSC129 intercepted three distinct high-grade vein sets. The most significant intersection returned 1.5 m @ 21.5 g/t AuEq (21.5 g/t Au, 0.0% Sb) from 1,238.6 m, representing the equal-deepest high-grade intercept on the project to date. This intersection is significant, extending mineralization 100 m down-dip from previous drilling.

The hole extended known mineralisation by 52 m below SDDSC118 (which returned 3.6 m @ 124.8 g/t AuEq from 1,120.4 m). The high-grade nature of the mineralisation is demonstrated by six intervals exceeding 5 g/t Au, with values reaching up to 56.3 g/t Au. Extended highlights include:

- 1.1 m @ 2.8 g/t AuEq (2.8 g/t Au, 0.0% Sb) from 826.1 m
- 1.6 m @ 1.3 g/t AuEq (1.3 g/t Au, 0.0% Sb) from 830.2 m
- 0.8 m @ 8.4 g/t AuEq (8.4 g/t Au, 0.0% Sb) from 890.7 m
- 0.9 m @ 4.9 g/t AuEq (4.9 g/t Au, 0.0% Sb) from 1,079.2 m
- **1.5 m @ 21.5 g/t AuEq** (21.5 g/t Au, 0.0% Sb) from 1,238.6 m, including:
 - **0.8 m @ 36.6 g/t AuEq** (36.6 g/t Au, 0.0% Sb) from 1,239.3 m
- **1.6 m @ 1.8 g/t AuEq** (1.8 g/t Au, 0.0% Sb) from 1,243.1 m

Pending Results and Update

Thirteen holes (SDDSC120W1, 140, 142, 146, 146W1, 147-151, 153, 155, 157) are currently being processed and analyzed, with five holes (SDDSC149W1, 152, 154, 155A, 157A) in progress (Figures 1 and 2).

Further Information

No upper gold grade cut is applied in the averaging and intervals are reported as drill thickness. However, during future Mineral Resource studies, the requirement for assay top cutting will be assessed. The Company notes that due to rounding of assay results to one significant figure, minor variations in calculated composite grades may occur.

Figures 1 to 4 show project location, plan and longitudinal views of drill results reported here and Tables 2 to 4 provide collar and assay data. The true thickness of the mineralized intervals reported individually as estimated true widths ("ETW"), otherwise they are interpreted to be approximately 25% to 50% of the sampled thickness for other reported holes. Lower grades were cut at 1.0 g/t AuEq lower cutoff over a maximum width of 2 m with higher grades cut at 5.0 g/t AuEq lower cutoff over a maximum of 1 m width unless specified unless otherwise* specified to demonstrate higher grade assays.

About Sunday Creek

The Sunday Creek epizonal-style gold project is located 60 km north of Melbourne within 16,900 hectares ("Ha") of granted exploration tenements. SXG is also the freehold landholder of 133.29 Ha that form the key portion in and around the main drilled area at the Sunday Creek Project and is closing on a 921.22 Ha (total 1,054.51 Ha or 2,605.8 acres) subject to Foreign Investment Board ("FIRB") approval.

Gold and antimony form in a relay of vein sets that cut across a steeply dipping zone of intensely altered rocks (the "host"). When observed from above, the host resembles the side rails of a ladder, where the sub-vertical mineralized vein sets are the rungs that extend from surface to depth. At Apollo and Rising Sun these individual 'rungs' have been defined over 600 m depth extent from surface to 1,100 m below surface, are 2.5 m to 3.5 m wide (median widths) (and up to 10 m), and 20 m to 100 m in strike.

Cumulatively, 154 drill holes for 69,693.69 m have been reported by SXG (and Mawson Gold Ltd) from Sunday Creek since late 2020. An additional 12 holes for 582.55 m from Sunday Creek were abandoned due to deviation or hole conditions. Fourteen drillholes for 2,383 m have been reported regionally outside of the main Sunday Creek drill area. A total of 64 historic drill holes for 5,599 m were completed from the late 1960s to 2008. The project now contains a total of **fifty-four (54)** >**100** g/t AuEq x m and fifty-nine (59) >**50 to 100** g/t AuEq x m drill holes by applying a 2 m @ 1 g/t lower cut.

Our systematic drill program is strategically targeting these significant vein formations, initially these have been defined over 1,350 m strike of the host from Christina to Apollo prospects, of which approximately 620 m has been more intensively drill tested (Rising Sun to Apollo). At least 67 'rungs' have been defined to date, defined by high-grade intercepts (20 g/t to >7,330 g/t Au) along with lower grade edges. Ongoing step-out drilling is aiming to uncover the potential extent of this mineralized system (Figure 3).

Geologically, the project is located within the Melbourne Structural Zone in the Lachlan Fold Belt. The regional host to the Sunday Creek mineralization is an interbedded turbidite sequence of siltstones and minor sandstones metamorphosed to sub-greenschist facies and folded into a set of open north-west trending fold.

Further Information

Further discussion and analysis of the Sunday Creek project by Southern Cross Gold is available on the SXG website at <u>www.southerncrossgold.com.au</u>.

Critical Metal Epizonal Gold-Antimony Deposits

Sunday Creek (Figure 4) is an epizonal gold-antimony deposit formed in the late Devonian (like Fosterville, Costerfield and Redcastle), 60 million years later than mesozonal gold systems formed in Victoria (for example Ballarat and Bendigo). Epizonal deposits are a form of orogenic gold deposit classified according to their depth of formation: epizonal (<6 km), mesozonal (6-12 km) and hypozonal (>12 km).

Epizonal deposits in Victoria often have associated high levels of the critical metal, antimony, and Sunday Creek is no exception. China claims a 56 per cent share of global mined supplies of antimony, according to a 2023 European Union study. Antimony features highly on the critical minerals lists of many countries including Australia, the United States of America, Canada, Japan and the European Union. Australia ranks seventh for antimony production despite all production coming from a single mine at Costerfield in Victoria, located nearby to all SXG projects. Antimony alloys with lead and tin which results in improved properties for solders, munitions, bearings and batteries. Antimony is a prominent additive for halogen-containing flame retardants. Adequate supplies of antimony are critical to the world's energy transition, and to the high-tech industry, especially the semi-conductor and defence sectors where it is a critical additive to primers in munitions.

The Chinese government placed export limits on September 15, 2024 on six antimony-related products. Additionally, the new policy bans gold-antimony smelting separation technology exports without permission from the ministry. This week China further ratcheted up supply pressure, imposing an outright ban on exports of gallium, germanium and antimony to the United States. This puts pressure on Western defence supply chains and negatively affect the supply of the metal and push up pricing given China's dominance of the supply of the metal in the global markets. This is positive for SXG as we are likely to have one of the very few large and high-quality projects of antimony in the western world that can feed western demand into the future.

Antimony represents approximately 20% in situ recoverable value of Sunday Creek at the gold equivalent calculation described below.

Technical Background and Qualified Person

The Qualified Person, Michael Hudson, Executive Chairman and a director of Mawson Gold, and a Fellow of the Australasian Institute of Mining and Metallurgy, has reviewed, verified and approved the technical contents of this release.

Analytical samples are transported to the Bendigo facility of On Site Laboratory Services ("On Site") which operates under both an ISO 9001 and NATA quality systems. Samples were prepared and analyzed for gold using the fire assay technique (PE01S method; 25 gram charge), followed by measuring the gold in solution with flame AAS equipment. Samples for multi-element analysis (BM011 and over-range methods as required) use aqua regia digestion and ICP-MS analysis. The QA/QC program of Southern Cross Gold consists of the systematic insertion of certified standards of known gold content, blanks within interpreted mineralized rock and quarter core duplicates. In addition, On Site inserts blanks and standards into the analytical process.

MAW considers that both gold and antimony that are included in the gold equivalent calculation ("AuEq") have reasonable potential to be recovered at Sunday Creek, given current geochemical understanding, historic production statistics and geologically analogous mining operations. Historically, ore from Sunday Creek was treated onsite or shipped to the Costerfield mine, located 54 km to the northwest of the project, for processing during WW1. The Costerfield mine corridor, now owned by Mandalay Resources Ltd contains two million ounces of equivalent gold (Mandalay Q3 2021 Results), and in 2020 was the sixth highest-grade global underground mine and a top 5 global producer of antimony.

MAW considers that it is appropriate to adopt the same gold equivalent variables as Mandalay Resources Ltd in its <u>Mandalay Technical Report, 2024</u> dated March 28, 2024. The gold equivalence formula used by Mandalay Resources was calculated using Costerfield's 2023 production costs, using a gold price of US\$1,900 per ounce, an antimony price of US\$12,000 per tonne and 2023 total year metal recoveries of 94% for gold and 89% for antimony, and is as follows:

$AuEq = Au (g/t) + 1.88 \times Sb (\%).$

Based on the latest Costerfield calculation and given the similar geological styles and historic toll treatment of Sunday Creek mineralization at Costerfield, SXG considers that a $AuEq = Au (g/t) + 1.88 \times Sb (\%)$ is appropriate to use for the initial exploration targeting of gold-antimony mineralization at Sunday Creek.

About Mawson Gold Limited (TSXV:MAW, FRANKFURT:MXR, OTCPINK:MWSNF)

<u>Mawson Gold Limited</u> has distinguished itself as a leading Nordic exploration company. Over the last decades, the team behind Mawson has forged a long and successful record of discovering, financing, and advancing mineral projects in the Nordics and Australia. Mawson holds the Skellefteå North gold discovery and a portfolio of historic uranium resources in Sweden. Mawson also holds 48.7% of Southern Cross Gold Ltd. (ASX:SXG) which owns or controls two high-grade, historic epizonal goldfields in Victoria, Australia, including the exciting Sunday Creek Au-Sb discovery.

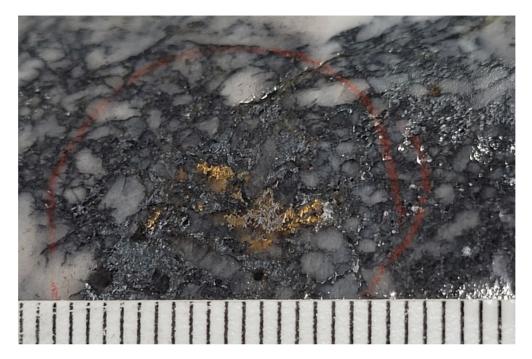
About Southern Cross Gold Ltd (ASX:SXG)

<u>Southern Cross Gold</u> holds the 100%-owned Sunday Creek project in Victoria and Mt Isa project in Queensland, the Redcastle joint venture in Victoria, Australia, and a strategic 6.7% holding in ASX-listed Nagambie Resources Limited (ASX:NAG) which grants SXG a Right of First Refusal over a 3,300 square kilometer tenement package held by NAG in Victoria.

On behalf of the Board,

"Michael Hudson"

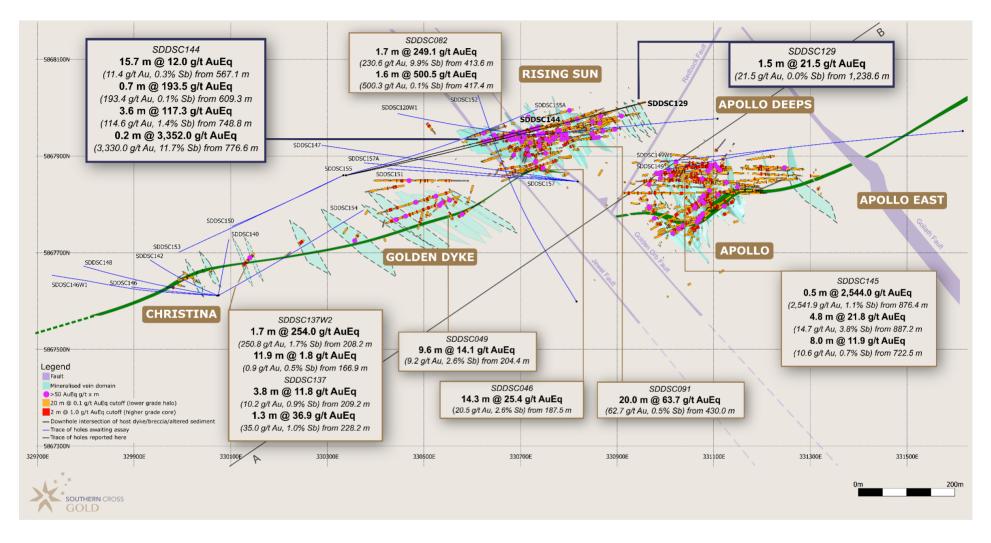
Michael Hudson, Interim CEO and Executive Chairman

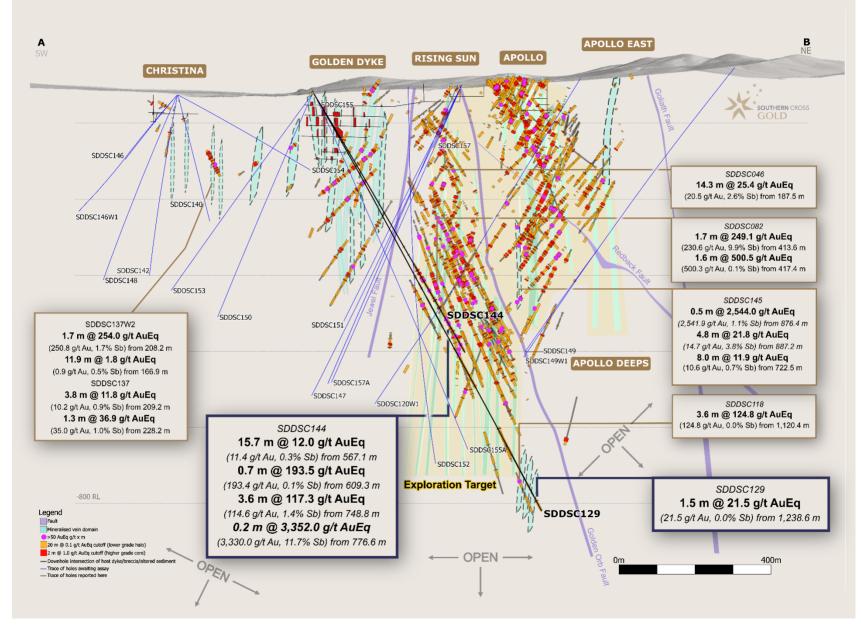

Further Information <u>www.mawsongold.com</u> 1305 – 1090 West Georgia St., Vancouver, BC, V6E 3V7 Mariana Bermudez (Canada), Corporate Secretary +1 (604) 685 9316 <u>info@mawsongold.com</u>

Forward-Looking Statement

This news release contains forward-looking statements or forward-looking information within the meaning of applicable securities laws (collectively, "forward-looking statements"). All statements herein, other than statements of historical fact, are forward-looking statements. Although Mawson believes that such statements are reasonable, it can give no assurance that such expectations will prove to be correct. Forward-looking statements are typically identified by words such as: believe, expect, anticipate, intend, estimate, postulate, and similar expressions, or are those, which, by their nature, refer to future events. Mawson cautions investors that any forward-looking statements are not guarantees of future results or performance, and that actual results may differ materially from those in forward-looking statements as a result of various factors, including, Mawson's expectations regarding its ownership interest in Southern Cross Gold, capital and other costs varying significantly from estimates, changes in world metal markets, changes in equity markets, the potential impact of epidemics, pandemics or other public health crises on the Company's business, risks related to negative publicity with respect to the Company or the mining industry in general; exploration potential being conceptual in nature, there being insufficient exploration to define a mineral resource on the Australian-projects owned by SXG, and uncertainty if further exploration will result in the determination of a mineral resource; planned drill programs and results varying from expectations, delays in obtaining results, equipment failure, unexpected geological conditions, local community relations, dealings with non-governmental organizations, delays in operations due to permit grants, environmental and safety risks, and other risks and uncertainties. Any forward-looking statement speaks only as of the date on which it is made and, except as may be required by applicable securities laws, Mawson disclaims any intent or obligation to update any forward-looking statement, whether as a result of new information, future events or results or otherwise.

Neither the TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this news release.


Picture 1: Quartz stibnite vein with coarse visible gold at 751.9 m. Interval assayed 0.4 m @ 754 g/t Au and 11.4% Sb from 751.9 m. Scale 1mm markings.


Picture 2: Quartz stibnite vein with coarse visible gold at 776.6 m. Interval assayed 0.16 m @ 3,330 g/t Au and 11.7% Sb from 776.6 m. Scale across image approximately 16 cm.

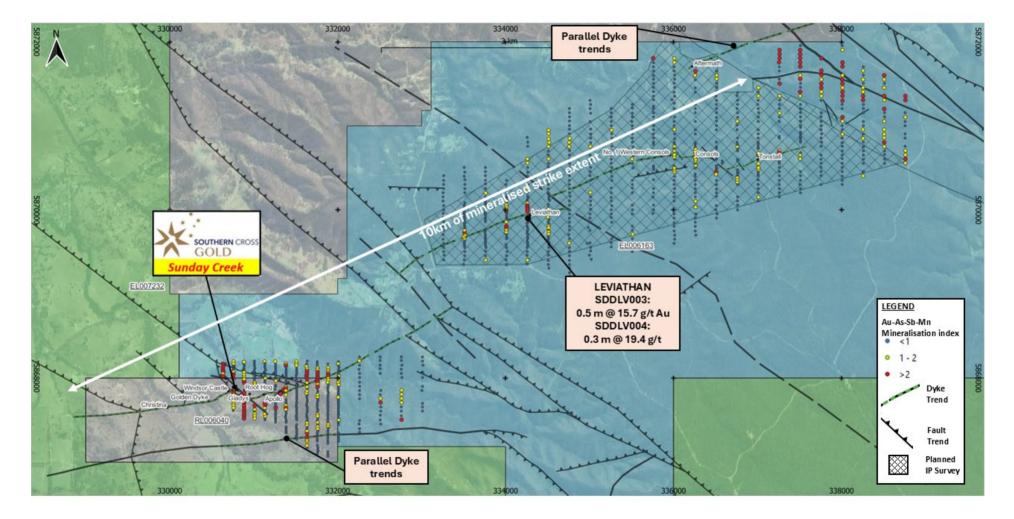

Figure 1: Sunday Creek plan view showing selected results from holes SDDSC129 and SDDSC144 reported here (blue highlighted box, black trace), with selected prior reported drill holes and pending holes.

Figure 2: Sunday Creek longitudinal section across A-B in the plane of the dyke breccia/altered sediment host looking towards the north (striking 236 degrees) showing mineralized veins sets. Showing hole SDDSC129 and SDDSC144 reported here (blue highlighted box, black trace), with selected intersections and prior reported drill holes. The vertical extents of the vein sets are limited by proximity to drill hole pierce points. For location refer to Figure 1.

Figure 3: Sunday Creek regional plan view showing soil sampling, structural framework, regional historic epizonal gold mining areas and broad regional areas tested by 12 holes for 2,383 m drill program. The regional drill areas are at Tonstal, Consols and Leviathan located 4,000-7,500 m along strike from the main drill area at Golden Dyke- Apollo.

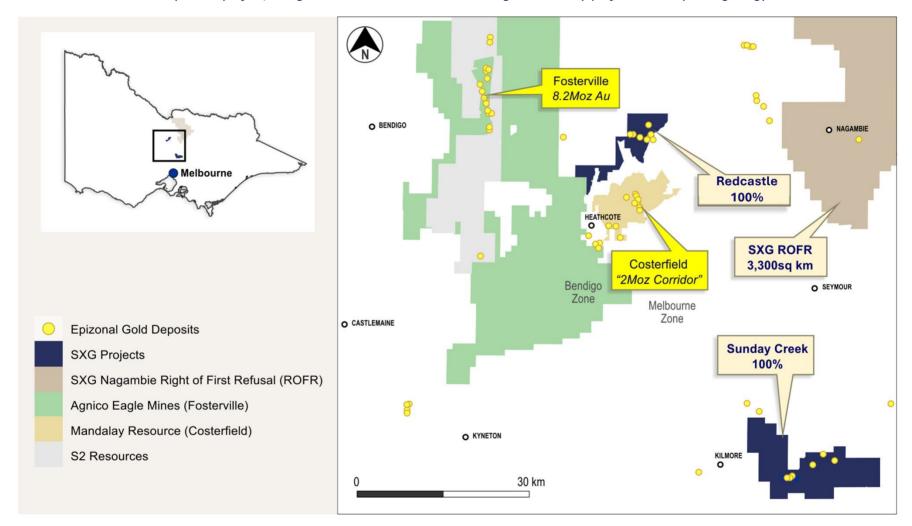


Figure 4: Location of the Sunday Creek project, along with the 100% owned Redcastle gold-antimony project and simplified geology.

Table 1: Drill collar summary table for recent drill holes in progress.

Hole-ID	Depth (m)	Prospect	East GDA94_Z55	North GDA94_Z55	Elevation	Azimuth	Plunge
SDDSC120W1	1088.5	Rising Sun	331108	5867977	319	267	-55
SDDSC129	1269.8	Rising Sun	330339	5867860	277	77	-58
SDDSC133	347.2	Apollo East	331376	5867742	335	8	-42
SDDSC136	349	Apollo East	331375	5867742	335	329	-41
SDDSC139	469.2	Apollo East	331464	5867865	333	267	-38
SDDSC140	352.9	Christina	330075	5867612	274	9	-70
SDDSC141	935.3	Golden Dyke	330809	5867842	301	272	-53
SDDSC142	500.67	Christina	330075	5867612	274	292	-70
SDDSC143	667.6	Apollo	331464	5867865	333	270	-39
SDDSC144	800.7	Rising Sun	330338	5867860	277	76	-56
SDDSC145	941	Apollo	331594	5867955	344	264	-40
SDDSC146	245.7	Christina	330073	5867612	274	273	-42
SDDSC146W1	461.2	Christina	330073	5867612	274	273	-42
SDDSC147	977.2	Golden Dyke	330809	5867842	301	278	-57
SDDSC148	563.6	Christina	330073	5867611	274	278	-57.2
SDDSC149	970.8	Apollo	331594	5867955	344	266	-47
SDDSC149W1	In progress plan 990 m	Apollo	331594	5867955	344	266	-47
SDDSC150	638.8	Christina	330333.4	5867860	276.9	244	-65
SDDSC151	737.2	Golden Dyke	330809	5867842	301	273.8	-56.5
SDDSC152	In progress plan 1100 m	Rising Sun	330815.9	5867599	295.8	328	-65
SDDSC153	641.6	Christina	330333.4	5867860	276.9	244.8	-52.5
SDDSC154	In progress plan 400 m	Christina	330075.1	5867612	273.6	60	-26.5
SDDSC155	31	Rising Sun	330338.7	5867860	276.9	72.7	-63.5
SDDSC155A	In progress plan 1025 m	Rising Sun	330338.7	5867860	276.9	72.7	-63.5
SDDSC157	194.4	Golden Dyke	330818	5867847	301.3	276.6	-58.4
SDDSC157A	In progress plan 900 m	Golden Dyke	330818	5867847	301.3	276.2	-60

Table 2: Table of mineralized drill hole intersections reported from SDDSC129 and SDDSC144 using two cutoff criteria. Lower grades cut at 1.0 g/t AuEq lower cutoff over a maximum of 2 m with higher grades cut at 5.0 g/t AuEq cutoff over a maximum of 1 m.

Hole-ID	From (m)	To (m)	Length (m)	Au g/t	Sb%	AuEq g/t
SDDSC129	826.1	827.2	1.1	2.8	0.0	2.8
SDDSC129	830.2	831.8	1.6	1.3	0.0	1.3
SDDSC129	890.7	891.5	0.8	8.4	0.0	8.4
SDDSC129	1079.2	1080.1	0.9	4.9	0.0	4.9
SDDSC129	1238.6	1240.1	1.5	21.5	0.0	21.5
Including	1239.3	1240.1	0.8	36.6	0.0	36.6
SDDSC129	1243.1	1244.7	1.6	1.8	0.0	1.8
SDDSC144	545.3	548.7	3.4	1.1	0.3	1.8
SDDSC144	554.0	560.3	6.3	1.7	0.4	2.5
SDDSC144	567.1	582.8	15.7	11.4	0.3	12.0
Including	568.9	573.0	4.1	40.2	0.3	40.8
SDDSC144	591.7	593.6	1.9	1.8	0.3	2.4
SDDSC144	596.6	597.6	1.0	3.9	0.0	4.0
SDDSC144	609.3	610.0	0.7	193.4	0.1	193.5
SDDSC144	632.5	633.0	0.5	84.8	1.2	87.1
Including	632.5	632.7	0.2	206.0	2.5	210.6
SDDSC144	638.0	641.7	3.7	0.9	0.3	1.5
SDDSC144	650.0	650.5	0.5	7.6	0.1	7.7
SDDSC144	656.0	657.0	1.0	3.9	0.2	4.2
SDDSC144	659.4	665.2	5.8	4.3	0.3	4.8
Including	664.8	665.2	0.4	56.1	0.4	56.8
SDDSC144	697.4	701.0	3.6	18.2	0.0	18.2
Including	697.4	698.6	1.2	55.2	0.1	55.3
SDDSC144	719.5	720.7	1.2	2.5	0.1	2.7
SDDSC144	733.9	736.1	2.2	1.3	0.0	1.4
SDDSC144	743.5	746.3	2.8	0.7	0.1	0.8
SDDSC144	748.8	752.4	3.6	114.6	1.4	117.3
Including	751.8	752.4	0.6	639.8	7.3	653.6
SDDSC144	776.6	776.8	0.2	3330.0	11.7	3352.0

Table 3: All individual assays reported from SDDSC129 and SDDSC144 reported here >0.1g/t AuEq..

Hole-ID	From (m)	To (m)	Length (m)	Au ppm	Sb%	AuEq (g/t)
SDDSC129	513.6	513.9	0.3	1.0	0.0	1.1
SDDSC129	554.8	555.5	0.8	0.3	0.0	0.3
SDDSC129	555.5	556.1	0.6	2.1	0.0	2.2
SDDSC129	556.1	556.5	0.4	0.1	0.0	0.1
SDDSC129	563.0	563.4	0.4	0.4	0.0	0.4
SDDSC129	563.4	563.7	0.2	8.7	0.1	8.8
SDDSC129	563.7	564.7	1.0	0.2	0.0	0.2
SDDSC129	592.5	593.4	1.0	0.2	0.0	0.2
SDDSC129	593.4	593.7	0.3	0.9	0.0	1.0
SDDSC129	593.7	594.0	0.3	0.3	0.0	0.3
SDDSC129	631.2	632.0	0.8	0.3	0.0	0.3
SDDSC129	648.8	648.9	0.1	0.1	0.0	0.1
SDDSC129	706.7	707.8	1.1	0.4	0.0	0.4
SDDSC129	714.8	716.0	1.2	0.5	0.1	0.6
SDDSC129	716.0	717.2	1.2	0.2	0.0	0.2
SDDSC129	751.0	752.0	1.0	0.2	0.0	0.2
SDDSC129	775.6	776.8	1.2	0.3	0.0	0.3
SDDSC129	779.2	780.4	1.2	0.6	0.0	0.7
SDDSC129	808.6	809.8	1.2	0.1	0.0	0.1
SDDSC129	816.8	817.4	0.6	0.2	0.0	0.2
SDDSC129	818.1	818.8	0.7	0.2	0.0	0.2
SDDSC129	818.8	819.4	0.6	0.4	0.1	0.6
SDDSC129	819.4	820.0	0.5	0.2	0.2	0.5
SDDSC129	820.0	820.4	0.5	0.1	0.0	0.1
SDDSC129	820.4	820.7	0.3	0.7	0.1	0.8
SDDSC129	822.8	823.6	0.8	0.2	0.0	0.2
SDDSC129	824.2	824.7	0.5	0.1	0.0	0.1
SDDSC129	826.1	826.3	0.2	2.4	0.1	2.6
SDDSC129	826.9	827.2	0.3	8.8	0.0	8.8
SDDSC129	827.2	828.0	0.8	0.1	0.0	0.1
SDDSC129	830.2	830.7	0.5	2.9	0.0	2.9
SDDSC129	830.7	831.2	0.5	0.4	0.0	0.4
SDDSC129	831.2	831.4	0.2	0.1	0.0	0.2
SDDSC129	831.4	831.8	0.4	1.3	0.2	1.6
SDDSC129	831.8	832.3	0.5	0.2	0.0	0.3
SDDSC129	832.3	832.8	0.4	0.2	0.0	0.3
SDDSC129	832.8	833.0	0.3	0.5	0.0	0.5
SDDSC129	833.0	833.9	0.9	0.1	0.0	0.2
SDDSC129	833.9	834.7	0.8	0.8	0.0	0.8
SDDSC129	835.9	836.1	0.3	0.4	0.0	0.5

SDDSC129	836.1	836.8	0.7	0.1	0.0	0.1
SDDSC129	837.2	837.8	0.6	0.3	0.0	0.3
SDDSC129	837.8	838.1	0.3	0.8	0.0	0.9
SDDSC129	838.1	838.6	0.5	0.5	0.1	0.6
SDDSC129	839.0	839.4	0.4	0.3	0.0	0.3
SDDSC129	840.0	840.6	0.6	0.2	0.0	0.2
SDDSC129	840.6	841.1	0.4	0.2	0.0	0.2
SDDSC129	841.1	841.4	0.4	0.3	0.0	0.3
SDDSC129	841.4	842.0	0.6	0.4	0.0	0.4
SDDSC129	842.0	843.3	1.3	0.2	0.0	0.2
SDDSC129	844.1	844.6	0.4	0.1	0.0	0.1
SDDSC129	844.6	844.9	0.3	0.1	0.0	0.1
SDDSC129	846.2	846.7	0.5	0.2	0.0	0.2
SDDSC129	849.1	849.3	0.2	0.2	0.0	0.2
SDDSC129	849.3	850.1	0.8	0.1	0.0	0.1
SDDSC129	850.9	852.0	1.1	0.1	0.0	0.1
SDDSC129	852.0	852.6	0.6	0.1	0.0	0.2
SDDSC129	855.7	856.2	0.5	0.2	0.0	0.2
SDDSC129	857.5	857.8	0.3	0.1	0.0	0.1
SDDSC129	857.8	858.1	0.3	0.3	0.0	0.3
SDDSC129	858.1	858.5	0.4	0.1	0.0	0.1
SDDSC129	859.1	859.9	0.7	0.4	0.0	0.4
SDDSC129	870.1	870.3	0.3	0.5	0.0	0.6
SDDSC129	870.3	871.3	1.0	0.1	0.0	0.1
SDDSC129	873.1	873.9	0.8	0.1	0.0	0.1
SDDSC129	873.9	874.9	0.9	0.2	0.0	0.2
SDDSC129	890.1	890.7	0.5	0.3	0.0	0.3
SDDSC129	890.7	891.5	0.8	8.4	0.0	8.4
SDDSC129	891.5	892.0	0.6	0.5	0.0	0.6
SDDSC129	892.0	892.7	0.7	0.6	0.0	0.6
SDDSC129	892.7	893.1	0.3	0.1	0.0	0.1
SDDSC129	893.5	893.8	0.3	0.9	0.0	0.9
SDDSC129	893.8	894.1	0.3	0.1	0.0	0.1
SDDSC129	894.1	894.7	0.6	0.1	0.0	0.1
SDDSC129	894.7	895.1	0.4	0.2	0.0	0.3
SDDSC129	895.1	895.2	0.1	0.2	0.0	0.2
SDDSC129	895.2	895.5	0.3	0.2	0.0	0.2
SDDSC129	896.0	896.7	0.7	0.2	0.0	0.2
SDDSC129	917.7	918.5	0.8	0.1	0.0	0.1
SDDSC129	980.7	981.0	0.2	0.2	0.0	0.2
SDDSC129	1027.8	1028.5	0.6	0.1	0.0	0.1
SDDSC129	1028.5	1029.2	0.8	0.1	0.0	0.1
SDDSC129	1032.0	1032.1	0.1	0.2	0.0	0.2

SDDSC129	1032.1	1032.7	0.6	0.3	0.0	0.3
SDDSC129	1032.7	1033.0	0.3	0.5	0.0	0.5
SDDSC129	1033.0	1033.9	0.9	0.5	0.0	0.5
SDDSC129	1033.9	1034.4	0.5	0.2	0.0	0.2
SDDSC129	1034.4	1035.3	0.9	0.3	0.0	0.3
SDDSC129	1036.4	1037.1	0.8	0.2	0.0	0.2
SDDSC129	1037.1	1037.5	0.4	0.4	0.0	0.4
SDDSC129	1038.2	1039.1	1.0	0.1	0.0	0.1
SDDSC129	1040.9	1042.1	1.2	0.3	0.0	0.3
SDDSC129	1042.1	1043.1	1.0	0.2	0.0	0.2
SDDSC129	1043.1	1043.4	0.3	0.2	0.0	0.2
SDDSC129	1043.4	1044.4	1.0	0.3	0.0	0.4
SDDSC129	1044.4	1045.2	0.8	0.4	0.0	0.4
SDDSC129	1045.2	1045.6	0.4	0.4	0.0	0.4
SDDSC129	1045.6	1046.1	0.5	0.4	0.0	0.4
SDDSC129	1046.1	1046.3	0.2	2.3	0.0	2.3
SDDSC129	1047.0	1047.8	0.8	0.2	0.0	0.2
SDDSC129	1047.8	1048.2	0.4	0.4	0.0	0.4
SDDSC129	1049.2	1050.1	0.9	0.3	0.0	0.3
SDDSC129	1050.1	1050.7	0.6	1.0	0.0	1.0
SDDSC129	1052.0	1053.0	1.0	0.3	0.0	0.4
SDDSC129	1055.5	1055.7	0.2	0.7	0.0	0.7
SDDSC129	1059.6	1060.9	1.3	0.1	0.0	0.1
SDDSC129	1064.0	1064.4	0.4	0.4	0.0	0.4
SDDSC129	1065.6	1065.8	0.2	0.5	0.0	0.5
SDDSC129	1065.8	1066.0	0.2	1.0	0.0	1.0
SDDSC129	1066.0	1067.0	1.0	0.2	0.0	0.2
SDDSC129	1069.8	1070.6	0.8	0.1	0.0	0.2
SDDSC129	1070.6	1071.1	0.5	0.2	0.0	0.2
SDDSC129	1079.2	1080.1	0.9	4.9	0.0	4.9
SDDSC129	1081.0	1081.5	0.5	0.2	0.0	0.2
SDDSC129	1088.9	1089.2	0.3	0.2	0.0	0.2
SDDSC129	1089.2	1090.4	1.2	0.2	0.0	0.2
SDDSC129	1091.2	1091.4	0.2	0.1	0.0	0.1
SDDSC129	1097.3	1097.4	0.1	0.1	0.0	0.1
SDDSC129	1099.8	1101.0	1.2	0.2	0.0	0.2
SDDSC129	1186.0	1187.0	1.0	0.2	0.0	0.2
SDDSC129	1187.0	1188.0	1.0	0.2	0.0	0.2
SDDSC129	1190.0	1191.0	1.0	0.1	0.0	0.1
SDDSC129	1192.3	1192.5	0.2	4.2	0.0	4.2
SDDSC129	1193.5	1193.6	0.2	0.1	0.0	0.2
SDDSC129	1224.3	1224.7	0.4	0.1	0.0	0.1
SDDSC129	1233.1	1233.7	0.7	0.2	0.0	0.2

SDDSC129	1235.6	1236.5	0.9	0.1	0.0	0.1
SDDSC129	1237.7	1238.0	0.3	0.1	0.0	0.1
SDDSC129	1238.0	1238.6	0.6	0.6	0.0	0.6
SDDSC129	1238.6	1239.3	0.7	3.2	0.0	3.2
SDDSC129	1239.3	1239.4	0.1	5.0	0.0	5.1
SDDSC129	1239.4	1239.8	0.4	56.3	0.0	56.3
SDDSC129	1239.8	1240.1	0.3	26.3	0.0	26.3
SDDSC129	1240.1	1240.9	0.9	0.1	0.0	0.1
SDDSC129	1240.9	1242.0	1.1	0.1	0.0	0.1
SDDSC129	1242.4	1242.9	0.4	0.3	0.0	0.3
SDDSC129	1242.9	1243.1	0.2	0.5	0.0	0.6
SDDSC129	1243.1	1243.7	0.6	1.8	0.0	1.8
SDDSC129	1243.7	1244.6	1.0	1.9	0.0	1.9
SDDSC129	1244.6	1244.9	0.2	0.1	0.0	0.1
SDDSC129	1245.6	1245.9	0.3	0.4	0.0	0.4
SDDSC129	1246.9	1247.8	0.9	0.1	0.0	0.1
SDDSC129	1248.0	1248.6	0.5	0.2	0.0	0.2
SDDSC129	1249.2	1250.0	0.8	0.7	0.0	0.7
SDDSC129	1250.0	1250.9	0.9	0.4	0.0	0.4
SDDSC129	1250.9	1252.1	1.3	0.3	0.0	0.3
SDDSC129	1252.1	1253.4	1.3	0.2	0.0	0.2
SDDSC129	1253.4	1254.6	1.2	0.5	0.0	0.5
SDDSC129	1254.9	1255.8	0.9	0.8	0.0	0.8
SDDSC129	1267.2	1267.5	0.3	1.4	0.0	1.4
SDDSC144	465.0	465.6	0.6	0.2	0.0	0.3
SDDSC144	473.0	473.5	0.5	0.3	0.0	0.4
SDDSC144	474.2	474.4	0.2	0.4	0.0	0.4
SDDSC144	475.0	475.7	0.7	0.1	0.0	0.1
SDDSC144	498.5	499.1	0.6	0.2	0.0	0.2
SDDSC144	499.1	499.8	0.6	0.2	0.0	0.2
SDDSC144	526.2	526.4	0.2	0.3	0.0	0.3
SDDSC144	527.8	528.3	0.5	0.1	0.0	0.1
SDDSC144	535.7	536.1	0.3	0.5	0.0	0.5
SDDSC144	536.7	537.0	0.4	0.4	0.0	0.4
SDDSC144	537.0	537.7	0.6	0.9	0.0	0.9
SDDSC144	537.7	538.0	0.3	0.5	0.0	0.5
SDDSC144	538.0	538.5	0.5	0.4	0.0	0.4
SDDSC144	539.9	540.0	0.2	0.4	0.0	0.4
SDDSC144	540.0	540.3	0.3	1.3	0.0	1.3
SDDSC144	540.3	540.5	0.2	0.5	0.0	0.6
SDDSC144	540.5	541.1	0.6	0.1	0.0	0.2
SDDSC144	544.5	545.3	0.8	0.2	0.0	0.2
SDDSC144	545.3	545.6	0.4	1.3	0.0	1.4

SDDSC144	546.5	546.6	0.1	0.7	0.2	1.1
SDDSC144	546.6	546.9	0.3	5.0	0.5	6.0
SDDSC144	546.9	547.2	0.2	0.3	0.4	1.0
SDDSC144	547.2	547.5	0.3	1.5	0.6	2.6
SDDSC144	547.5	547.7	0.2	0.6	0.9	2.3
SDDSC144	547.7	548.0	0.3	0.2	0.7	1.6
SDDSC144	548.0	548.3	0.3	1.9	0.1	2.2
SDDSC144	548.3	548.6	0.3	1.0	0.7	2.2
SDDSC144	550.9	551.6	0.6	0.5	0.3	1.0
SDDSC144	552.3	552.4	0.1	0.7	0.1	0.8
SDDSC144	552.4	552.9	0.5	0.1	0.0	0.2
SDDSC144	552.9	554.0	1.1	0.1	0.0	0.2
SDDSC144	554.0	554.7	0.7	3.6	0.1	3.8
SDDSC144	554.7	555.3	0.6	5.8	0.1	5.9
SDDSC144	555.3	556.2	0.9	0.2	0.1	0.4
SDDSC144	556.2	557.0	0.9	0.2	0.4	0.9
SDDSC144	557.0	557.3	0.2	8.8	1.4	11.5
SDDSC144	557.3	557.9	0.6	0.4	0.7	1.8
SDDSC144	557.9	558.8	0.9	0.2	0.2	0.5
SDDSC144	558.8	559.4	0.6	2.9	1.3	5.4
SDDSC144	559.4	559.9	0.6	0.3	0.1	0.4
SDDSC144	559.9	560.3	0.4	0.7	1.2	2.8
SDDSC144	560.3	561.3	1.0	0.2	0.0	0.2
SDDSC144	561.3	562.3	1.0	0.2	0.0	0.3
SDDSC144	562.3	563.0	0.7	0.4	0.1	0.5
SDDSC144	563.7	564.5	0.8	1.1	0.0	1.2
SDDSC144	564.5	565.0	0.5	0.2	0.0	0.2
SDDSC144	565.0	565.8	0.8	0.4	0.0	0.5
SDDSC144	565.8	566.2	0.5	0.7	0.1	0.8
SDDSC144	566.2	567.1	0.9	0.2	0.0	0.3
SDDSC144	567.1	567.4	0.3	15.2	0.1	15.3
SDDSC144	567.4	568.0	0.6	1.3	0.2	1.7
SDDSC144	568.0	568.9	0.9	3.0	0.2	3.4
SDDSC144	568.9	569.8	0.9	7.7	0.2	8.2
SDDSC144	569.8	570.7	0.8	0.3	0.1	0.5
SDDSC144	570.7	571.5	0.8	47.2	0.5	48.2
SDDSC144	571.5	572.1	0.7	0.3	0.2	0.6
SDDSC144	572.1	572.3	0.2	1.1	0.4	1.8
SDDSC144	572.3	572.5	0.2	136.0	0.6	137.1
SDDSC144	572.5	572.7	0.2	268.0	0.1	268.2
SDDSC144	572.7	573.0	0.3	123.0	0.7	124.3
SDDSC144	573.0	573.2	0.2	0.5	0.2	0.8
SDDSC144	573.2	574.1	0.9	0.1	0.0	0.2

SDDSC144	574.1	575.1	1.0	0.9	0.5	1.8
SDDSC144	575.1	576.1	1.0	0.3	0.3	1.0
SDDSC144	576.1	577.1	1.0	1.9	0.4	2.6
SDDSC144	577.1	578.1	1.0	0.6	0.4	1.3
SDDSC144	578.1	579.0	0.9	1.1	0.1	1.4
SDDSC144	579.0	579.9	0.9	0.8	0.3	1.3
SDDSC144	579.9	580.8	0.9	0.9	0.2	1.2
SDDSC144	580.8	581.8	1.0	1.1	0.2	1.5
SDDSC144	581.8	582.8	1.0	0.6	0.7	1.8
SDDSC144	582.8	583.8	1.0	0.3	0.3	0.8
SDDSC144	583.8	584.8	1.0	0.1	0.1	0.3
SDDSC144	585.8	586.8	1.0	0.9	0.2	1.3
SDDSC144	586.8	587.8	1.0	0.3	0.1	0.5
SDDSC144	587.8	588.5	0.7	0.1	0.1	0.3
SDDSC144	588.5	589.1	0.6	0.2	0.0	0.2
SDDSC144	589.1	589.3	0.2	2.6	0.0	2.7
SDDSC144	589.9	590.6	0.7	0.4	0.2	0.7
SDDSC144	591.7	592.6	0.9	2.3	0.2	2.6
SDDSC144	592.6	593.6	1.0	1.4	0.4	2.1
SDDSC144	593.6	594.6	1.0	0.2	0.0	0.3
SDDSC144	595.3	595.6	0.3	0.5	0.0	0.5
SDDSC144	595.6	596.6	1.0	0.4	0.1	0.5
SDDSC144	596.6	597.6	1.0	3.9	0.0	4.0
SDDSC144	599.6	600.6	1.0	0.2	0.0	0.3
SDDSC144	600.6	601.6	1.0	0.2	0.0	0.2
SDDSC144	601.6	602.6	1.0	0.1	0.1	0.2
SDDSC144	606.0	607.0	1.0	0.4	0.1	0.5
SDDSC144	607.0	608.0	1.0	0.4	0.1	0.6
SDDSC144	609.0	609.3	0.3	0.2	0.0	0.3
SDDSC144	609.3	609.5	0.2	735.0	0.1	735.1
SDDSC144	609.5	609.8	0.4	0.2	0.0	0.2
SDDSC144	609.8	610.0	0.1	6.1	0.2	6.4
SDDSC144	610.0	610.6	0.7	0.1	0.0	0.1
SDDSC144	610.6	610.9	0.2	0.3	0.1	0.4
SDDSC144	611.7	612.3	0.6	0.4	0.0	0.4
SDDSC144	614.3	614.7	0.4	0.2	0.1	0.3
SDDSC144	614.7	615.5	0.8	0.0	0.0	0.1
SDDSC144	615.5	615.7	0.1	10.8	1.5	13.6
SDDSC144	615.7	616.7	1.0	0.4	0.1	0.7
SDDSC144	617.7	618.7	1.0	0.1	0.0	0.1
SDDSC144	623.7	624.7	1.0	0.1	0.0	0.1
SDDSC144	624.7	625.7	1.0	0.2	0.0	0.3
SDDSC144	627.6	627.8	0.2	0.1	0.0	0.1

SDDSC144	630.9	631.6	0.7	0.2	0.2	0.6
SDDSC144	632.5	632.7	0.2	206.0	2.5	210.6
SDDSC144	632.7	633.0	0.3	3.9	0.4	4.7
SDDSC144	633.0	634.0	1.0	0.3	0.0	0.3
SDDSC144	634.0	635.0	1.0	0.1	0.0	0.2
SDDSC144	635.0	636.0	1.0	0.6	0.0	0.6
SDDSC144	636.0	637.0	1.0	0.3	0.0	0.3
SDDSC144	637.0	638.0	1.0	0.2	0.1	0.3
SDDSC144	638.0	639.0	1.0	1.8	0.7	3.1
SDDSC144	639.0	639.5	0.5	0.6	0.2	0.9
SDDSC144	639.5	640.4	0.9	0.1	0.0	0.2
SDDSC144	640.4	640.7	0.4	0.6	0.8	2.1
SDDSC144	640.7	641.7	1.0	0.9	0.2	1.3
SDDSC144	641.7	642.7	1.0	0.3	0.1	0.5
SDDSC144	642.7	643.7	1.0	0.8	0.1	0.9
SDDSC144	643.7	644.6	0.9	0.5	0.3	1.0
SDDSC144	644.6	645.3	0.7	0.5	0.3	1.1
SDDSC144	647.0	648.0	1.0	0.3	0.0	0.3
SDDSC144	650.0	650.4	0.4	2.1	0.0	2.1
SDDSC144	650.4	650.5	0.1	27.0	0.3	27.6
SDDSC144	650.7	650.8	0.1	0.3	0.1	0.5
SDDSC144	650.8	651.9	1.1	0.1	0.0	0.2
SDDSC144	651.9	652.0	0.2	0.3	0.2	0.7
SDDSC144	655.0	656.0	1.0	0.2	0.0	0.3
SDDSC144	656.0	657.0	1.0	3.9	0.2	4.2
SDDSC144	657.0	658.0	1.0	0.6	0.0	0.7
SDDSC144	658.0	658.8	0.8	0.2	0.0	0.2
SDDSC144	658.8	659.4	0.6	0.4	0.0	0.4
SDDSC144	659.4	660.2	0.8	0.9	0.2	1.2
SDDSC144	660.2	661.0	0.8	0.1	0.0	0.1
SDDSC144	661.0	662.0	1.0	0.3	0.1	0.5
SDDSC144	662.0	662.9	0.9	0.4	0.6	1.5
SDDSC144	662.9	663.8	0.9	0.7	0.5	1.6
SDDSC144	663.8	664.0	0.2	1.4	0.3	2.0
SDDSC144	664.0	664.8	0.8	0.3	0.1	0.4
SDDSC144	664.8	665.2	0.4	56.1	0.4	56.8
SDDSC144	673.0	674.0	1.0	0.5	0.1	0.7
SDDSC144	674.0	675.0	1.0	0.2	0.0	0.2
SDDSC144	675.0	676.0	1.0	0.2	0.0	0.2
SDDSC144	678.0	679.0	1.0	0.1	0.0	0.1
SDDSC144	688.0	689.0	1.0	0.2	0.0	0.2
SDDSC144	689.0	690.0	1.0	0.4	0.0	0.5
SDDSC144	690.0	691.0	1.0	0.1	0.0	0.2

SDDSC144	691.0	691.3	0.3	0.6	0.0	0.7
SDDSC144	691.3	692.0	0.8	0.2	0.0	0.2
SDDSC144	692.0	693.0	1.0	0.3	0.0	0.3
SDDSC144	696.0	697.0	1.0	0.2	0.0	0.3
SDDSC144	697.4	697.7	0.3	5.4	0.0	5.4
SDDSC144	697.7	698.2	0.5	127.0	0.0	127.1
SDDSC144	698.2	698.6	0.4	5.6	0.1	5.8
SDDSC144	699.1	700.0	0.9	0.5	0.0	0.6
SDDSC144	700.0	701.0	1.0	1.4	0.0	1.4
SDDSC144	707.0	708.0	1.0	0.5	0.0	0.6
SDDSC144	708.0	709.0	1.0	1.0	0.0	1.0
SDDSC144	711.0	712.0	1.0	0.2	0.0	0.3
SDDSC144	712.0	713.0	1.0	1.1	0.1	1.4
SDDSC144	713.0	714.0	1.0	0.3	0.0	0.4
SDDSC144	714.0	715.0	1.0	0.1	0.0	0.2
SDDSC144	715.0	716.0	1.0	0.2	0.0	0.3
SDDSC144	716.0	716.7	0.7	0.3	0.0	0.4
SDDSC144	716.7	717.3	0.6	2.2	0.0	2.3
SDDSC144	717.3	718.0	0.7	0.2	0.0	0.3
SDDSC144	718.0	719.0	1.0	0.3	0.0	0.3
SDDSC144	719.0	719.5	0.5	0.2	0.0	0.2
SDDSC144	719.5	719.7	0.2	5.0	0.2	5.4
SDDSC144	719.7	720.0	0.3	2.5	0.0	2.5
SDDSC144	720.0	720.7	0.7	1.9	0.1	2.0
SDDSC144	720.7	721.7	1.0	0.1	0.0	0.1
SDDSC144	723.0	724.0	1.0	0.1	0.0	0.1
SDDSC144	724.0	725.2	1.2	0.3	0.0	0.3
SDDSC144	725.2	725.7	0.5	1.1	0.3	1.6
SDDSC144	726.8	728.0	1.2	0.1	0.0	0.1
SDDSC144	728.0	729.0	1.0	0.1	0.0	0.2
SDDSC144	729.0	730.0	1.0	0.4	0.1	0.5
SDDSC144	730.0	730.6	0.6	0.3	0.0	0.3
SDDSC144	730.6	730.8	0.3	0.2	0.0	0.2
SDDSC144	730.8	731.3	0.5	0.2	0.0	0.2
SDDSC144	731.3	731.6	0.3	1.0	0.0	1.1
SDDSC144	733.9	734.5	0.6	1.1	0.0	1.2
SDDSC144	734.5	735.1	0.6	2.6	0.1	2.7
SDDSC144	735.1	735.3	0.2	0.4	0.0	0.4
SDDSC144	735.3	735.5	0.2	0.8	0.0	0.9
SDDSC144	735.5	735.8	0.3	0.4	0.0	0.5
SDDSC144	735.8	736.1	0.4	1.0	0.0	1.1
SDDSC144	740.5	740.6	0.2	0.3	0.3	0.9
SDDSC144	740.6	741.4	0.8	0.2	0.0	0.2

SDDSC144	741.7	742.9	1.3	0.1	0.0	0.1
SDDSC144	742.9	743.5	0.6	0.1	0.0	0.1
SDDSC144	743.5	743.9	0.4	1.3	0.0	1.3
SDDSC144	744.3	744.9	0.6	1.2	0.0	1.3
SDDSC144	744.9	745.3	0.4	0.2	0.0	0.3
SDDSC144	745.9	746.3	0.5	1.2	0.2	1.6
SDDSC144	747.2	748.1	0.9	0.1	0.0	0.1
SDDSC144	748.1	748.8	0.7	0.2	0.0	0.3
SDDSC144	748.8	749.0	0.2	1.2	0.3	1.8
SDDSC144	749.0	749.4	0.3	0.7	0.4	1.4
SDDSC144	749.4	749.9	0.5	0.7	0.2	1.0
SDDSC144	749.9	750.2	0.3	4.9	0.5	5.8
SDDSC144	750.2	750.5	0.3	0.2	0.0	0.2
SDDSC144	750.5	751.3	0.8	0.4	0.0	0.5
SDDSC144	751.3	751.6	0.3	0.6	0.1	0.8
SDDSC144	751.6	751.8	0.2	0.7	0.2	1.1
SDDSC144	751.8	751.9	0.2	547.0	3.3	553.2
SDDSC144	751.9	752.3	0.4	754.0	11.4	775.4
SDDSC144	752.3	752.4	0.1	421.0	0.4	421.8
SDDSC144	752.4	752.5	0.1	0.5	0.0	0.6
SDDSC144	752.5	753.5	1.0	0.1	0.0	0.1
SDDSC144	755.0	755.4	0.5	0.1	0.0	0.1
SDDSC144	756.1	756.5	0.4	0.1	0.0	0.1
SDDSC144	756.5	756.9	0.4	0.1	0.0	0.1
SDDSC144	759.3	759.9	0.6	0.8	0.0	0.8
SDDSC144	760.2	760.7	0.5	0.4	0.0	0.4
SDDSC144	762.7	763.2	0.6	0.2	0.0	0.3
SDDSC144	763.2	763.9	0.7	0.2	0.0	0.2
SDDSC144	763.9	764.7	0.8	0.3	0.1	0.4
SDDSC144	764.7	765.3	0.6	0.1	0.0	0.1
SDDSC144	765.3	766.1	0.9	0.2	0.1	0.4
SDDSC144	766.1	766.8	0.6	0.2	0.1	0.5
SDDSC144	766.8	767.4	0.6	0.1	0.2	0.4
SDDSC144	768.3	768.4	0.2	0.1	0.0	0.2
SDDSC144	773.5	773.8	0.3	0.7	0.0	0.7
SDDSC144	773.8	774.3	0.5	0.3	0.2	0.7
SDDSC144	776.2	776.6	0.4	0.8	0.1	1.0
SDDSC144	776.6	776.8	0.2	3330.0	11.7	3352.0
SDDSC144	776.8	777.3	0.5	0.7	0.0	0.8
SDDSC144	777.3	777.6	0.3	0.3	0.0	0.3
SDDSC144	777.6	778.1	0.5	0.5	0.0	0.5
SDDSC144	789.4	789.5	0.1	0.0	0.2	0.4
SDDSC144	795.2	795.5	0.4	1.9	0.0	1.9