

1305 – 1090 West Georgia Street, Vancouver, BC, V6E 3V7 Phone: +1 604 685 9316 / Fax: +1 604 683 1585

NEWS RELEASE APRIL 06, 2017

MAWSON DRILLS 13.7 METRES AT 2.0 g/t GOLD AT RAJAPALOT, FINLAND

Vancouver, Canada – <u>Mawson Resources Limited</u> ("Mawson") or (the "Company") (TSX:MAW) (Frankfurt:MXR) (PINKSHEETS: MWSNF) announces drill results from thirteen diamond drill holes from the 2017 winter program at the Company's 100% owned Rajapalot Project in Northern Finland. With these results, the mineralized zone has been significantly extended, with gold mineralization discovered on the western, southern and eastern margins of the previous mineralization footprint. Four drill rigs continue to drill 24/7.

Key Points:

- > PAL0048, drilled 1.75 km southeast of Palokas intersected:
 - > 6.0 metres @ 2.0 g/t gold from 53 metres and 13.7 metres @ 2.0 g/t gold from 82 metres;
 - Mineralized zone without a lower cut off comprises 42.7 metres @ 1.0 g/t gold from 53.0 metres in magnetite, pyrrhotite, biotite and chlorite altered rocks;
 - > PAL0048 is the most easterly hole drilled at Rajapalot to date and mineralization remains open;
- > PAL0043, drilled 1.5 km southwest of Palokas and 1.1 km west of PAL0048 intersected:
 - > 12.0 metres @ 1.2 g/t gold from 10.6 metres;
 - > This hole targeted a VTEM anomaly and is the westernmost hole reported from Rajapalot to date, which opens a new area of exploration potential to the west;
- PAL0040, drilled 450 metres southeast of PAL0043 and 75 metres south west of PAL0037 (56 metres @ 0.53 g/t gold from 33 metres Mawson Press Release March 06, 2017) intersected:
 - > **5.0 metres @ 1.2 g/t gold** from 37.3 metres;
 - > This is the southernmost drill hole at Rajapalot, opening a new area of exploration potential to the south;
- > Forty-two holes (PAL0027-PAL0069) have been completed to date, totalling 8,721 metres of diamond drill core. With this release, assay results from a total of 19 holes have been reported, while results are pending for an additional 23 completed holes. A further 10 diamond drill holes are planned to be drilled before the completion of the winter program.

Mr. Hudson, Chairman and CEO, states, "The bold exploration approach taken by Mawson during the 2017 winter program is now paying dividends. By stepping out to previously known the limits of the mineralized system at Rajapalot, the gold mineralized footprint has been significantly expanded and demonstrated to be open on the western, southern and eastern margins. In combination with the significant hydrothermal alteration observed in all holes, it is clear a large mineralized system exists at Rajapalot. With less than 50% of assays received from holes drilled to date, and four rigs still drilling 24/7, we look forward to further news flow."

A plan view of the drill results is provided in Figure 1. Tables 1, 2 and 3 include all relevant collar and assay information. The true thickness of the mineralized interval is interpreted to be approximately 90% of the sampled thickness.

These drill results support the discovery of a new style of gold-bearing system at South Rajapalot, as described in <u>Mawson Press Release March 06, 2017</u>. Mineralization is characterized by an extensive area of potassic-iron-sulphide alteration located up to 1,800m south of the Palokas prospect. Drilling has defined a zone that now extends for 1,200m along strike and 400m in width that remains open.

Gold-anomalous alteration has been drilled to date over a 1,200 m x 400 m area in South Rajapalot. It consists of sulphide, magnetite, biotite and chlorite hydrothermal mineral assemblages hosted in predominately grey albitites. Textures range

from veined albitic granofels through fractured and brecciated to locally schistose. Veining and fracture fill minerals include magnetite, pyrrhotite and magnetite-pyrrhotite (+/- quartz). Local retrograde chlorite after biotite and vein-controlled chlorite+/- tourmaline and magnetite are also present. Preliminary hand-held XRF analysis confirms the presence of associated scheelite and molybdenite, the former visible under UV light as tiny veinlets and disseminations. The iron-rich nature of the mineralized rocks is a common theme in either the oxide or sulphide form, with a variably sulphidic and chloritic overprint. The alteration is clearly post-metamorphic, reduced, and most likely driven by granitoid intrusions. Chlorite is regarded as the lowest temperature silicate mineral with gold, structurally controlled in apparent association with quartz veins. Altered rocks enclosing the mineralized package contain locally abundant talc and tourmaline.

Technical and Environmental Background

Two diamond drill rigs (K1 & K2) from the Arctic Drilling Company OY (ADC) with water recirculation and drill cuttings collection systems were used for the drill program. Core diameter is NQ2 (50.6 mm) diameter core. Core recoveries were excellent and average close to 100% in fresh rock. After photographing and logging in Mawson's Rovaniemi facilities, core intervals averaging 1 metre for mineralized samples and 2 m for barren samples were cut in half at the Geological Survey of Finland (GTK) core facilities in Rovaniemi, Finland. The remaining half core is retained for verification and reference purposes. Analytical samples were transported by Mawson personnel or commercial transport from site to the CRS Minlab Oy facility in Kempele, Finland. Samples were prepared at Kempele and analyzed for gold at Raahe using the PAL1000 technique which involves grinding the sample in steel pots with abrasive media in the presence of cyanide, followed by measuring the gold in solution with flame AAS equipment. The QA/QC program of Mawson consists of the systematic insertion of certified standards of known gold content, duplicate samples by quartering the core, and blanks the within interpreted mineralized rock. In addition, CRS inserts blanks and standards into the analytical process.

The qualified person for Mawson's Finnish projects, Dr. Nick Cook, President for Mawson and Fellow of the Australasian Institute of Mining Metallurgy has reviewed and verified the contents of this release.

About Mawson Resources Limited (TSX:MAW, FRANKFURT:MXR, PINKSHEETS:MWSNF)

<u>Mawson Resources Limited</u> is an exploration and development company. Mawson has distinguished itself as a leading Nordic Arctic exploration company with a focus on the flagship Rompas and Rajapalot gold projects in Finland.

On behalf of the Board,

Further Information www.mawsonresources.com

1305 – 1090 West Georgia St., Vancouver, BC, V6E 3V7
Mariana Bermudez (Canada), Corporate Secretary, +1 (604) 685 9316,
info@mawsonresources.com

"Michael Hudson"

Michael Hudson, Chairman & CEO

Forward-Looking Statement

This news release contains forward-looking statements or forward-looking information within the meaning of applicable securities laws (collectively, "forward-looking statements"). All statements herein, other than statements of historical fact, are forward-looking statements. Although Mawson believes that such statements are reasonable, it can give no assurance that such expectations will prove to be correct. Forward-looking statements are typically identified by words such as: believe, expect, anticipate, intend, estimate, postulate, and similar expressions, or are those, which, by their nature, refer to future events. Mawson cautions investors that any forward-looking statements are not guarantees of future results or performance, and that actual results may differ materially from those in forward-looking statements as a result of various factors, including, but not limited to, capital and other costs varying significantly from estimates, changes in world metal markets, changes in equity markets, planned drill programs and results varying from expectations, delays in obtaining results, equipment failure, unexpected geological conditions, local community relations, dealings with non-governmental organizations, delays in operations due to permit grants, environmental and safety risks, and other risks and uncertainties disclosed under the heading "Risk Factors" in Mawson's most recent Annual Information Form filed on www.sedar.com. Any forward-looking statement speaks only as of the date on which it is made and, except as may be required by applicable securities laws, Mawson disclaims any intent or obligation to update any forward-looking statement, whether as a result of new information, future events or results or otherwise.

Table 1: Collar Information from 2017 Winter drilling at the Palokas Prospect

HoleID	East	North	Azimuth	Dip	RL	Depth (m)	Comment
PAL0027	3408668	7373860	116	60	175	301.6	Feb 21, 2017
PAL0028	3408723	7373889	116	60	175	92.3	Feb 21, 2017
PAL0029	3408629	7373987	116	60	175	209.3	Feb 21, 2017
PAL0030	3408608	7373943	116	60	174	194.8	Feb 21, 2017
PAL0031	3408701	7373954	116	60	174	131	Mar 06, 2017
PAL0032	3408800	7374095	116	60	175	174.2	Mar 06, 2017
PAL0033	3408125	7373140	150	60	173	215.8	Mar 06, 2017
PAL0034	3408167	7373072	150	60	176	143.55	Reported here
PAL0035	3408095	7372898	135	60	176	191.8	Reported here
PAL0036	3408122	7372856	135	60	175	115.05	Reported here
PAL0037	3408008	7372395	116	60	177	244.3	Mar 06, 2017
PAL0038	3407903	7372442	116	60	177	300.5	Reported here
PAL0039	3408010	7372472	116	50	177	248.8	Reported here
PAL0040	3407938	7372359	116	50	177	200.1	Reported here
PAL0041	3407936	7372539	116	50	174	341.35	Reported here
PAL0042	3407841	7372408	116	50	173	257.15	Results Awaited
PAL0043	3407843	7372798	116	60	176	339	Reported here
PAL0044	3407645	7372424	90	50	173	250.6	Results Awaited
PAL0045	3407533	7372698	116	50	173	352.1	Reported here
PAL0046	3408153	7372322	135	60	179	108.05	Reported here
PAL0047	3410582	7373349	150	50	161	100.3	Results Awaited
PAL0048	3408815	7372268	90	50	173	188.2	Reported here
PAL0049	3408269	7372635	180	60	177	254.9	Results Awaited
PAL0050	3410618	7373308	150	50	161	103.5	Results Awaited
PAL0051	3408810	7372200	90	50	173	153.85	Results Awaited
PAL0052	3410568	7373393	150	50	161	100.2	Results Awaited
PAL0053	3408283	7372532	180	60	177	260.8	Results Awaited
PAL0054	3410651	7373254	150	50	163	154.5	Results Awaited
PAL0055	3408380	7372320	150	50	176	190.7	Results Awaited
PAL0056	3408708	7372201	90	50	174	268.15	Results Awaited
PAL0057	3410688	7373202	150	50	166	147	Results Awaited
PAL0058	3408712	7372254	90	50	174	258.25	Results Awaited
PAL0059	3408092	7372458	150	60	178	157	Results Awaited
PAL0060	3410986	7371862	70	50	138	153	Results Awaited
PAL0061	3409765	7372753	150	60	161	259.7	Results Awaited
PAL0062	3408753	7372465	155	60	177	237	Results Awaited
PAL0063	3407948	7372718 7371882	116	60	174	173.9	Results Awaited
PALO065	3411066		70 70	50 50	139	120	Results Awaited
PAL0065 PAL0066	3410951 3408970	7371899 7372540	70 160	50 60	138 174	97.5 252.2	Results Awaited Results Awaited
PAL0066	3408970	7372540	135	60	162	203	Results Awaited Results Awaited
PALO067 PALO068	3410020	7373122	160	60	172	255.7	Results Awaited Results Awaited
PAL0068	3409009	7372420	116	60	172	233.7	Results Awaited Results Awaited
PALUUDY	3 1 00447	7373330	110	00	1/2	220	Results Awaited

Table 2: Better intersections from the 2017 Winter Drill Program reported. 0.5g/t Au over 1m lower cut (unless stated), no upper cut-off
*0.5g/t Au over 2m lower cut

Hole ID	Depth From (m)	Depth To (m)	Width (m)	Au g/t	Date Reported
PAL0027	27.46	31.01	3.6	2.5	Feb 21, 2017
PAL0027	34.41	41.21	6.8	14.7	Feb 21, 2017
PAL0027	44.20	47.20	3.0	3.2	Feb 21, 2017
PAL0028	21.70	22.70	1.0	0.8	Feb 21, 2017
PAL0028	37.60	39.25	1.7	3.9	Feb 21, 2017
PAL0029	95.65	96.65	1.0	0.7	Feb 21, 2017
PAL0030	110.20	120.20	10.0	11.6	Feb 21, 2017
PAL0030	135.70	138.60	2.9	1.0	Feb 21, 2017
PAL0030	143.85	146.85	3.0	5.3	Feb 21, 2017
PAL0031	85.4	86.4	1.0	1.5	Mar 06, 2017
PAL0032				No significant results	Mar 06, 2017
PAL0033	152.5	154.7	2.2	7.7	Mar 06, 2017
PAL0034				No significant results	Reported here
PAL0035				No significant results	Reported here
PAL0036				No significant results	Reported here
PAL0037	33	35	2.0	3.6	Mar 06, 2017
PAL0038				No significant results	Reported here
PAL0039	112.8	113.1	0.4	2.9	Reported here
PAL0040	37.3	42.3	5.0	1.2	Reported here
PAL0041	179	180	1.0	1.3	Reported here
PAL0041	242.6	243.6	1.0	1.2	Reported here
PAL0043*	10.6	22.6	12.0	1.2	Reported here
PAL0045				No significant results	Reported here
PAL0046				No significant results	Reported here
PAL0048	53	59	6.0	2.0	Reported here
					Reported here
PAL0048	82	95.7	13.7	2.0	No lower cut: 42.7m @ 1.0g/t from 53.0m

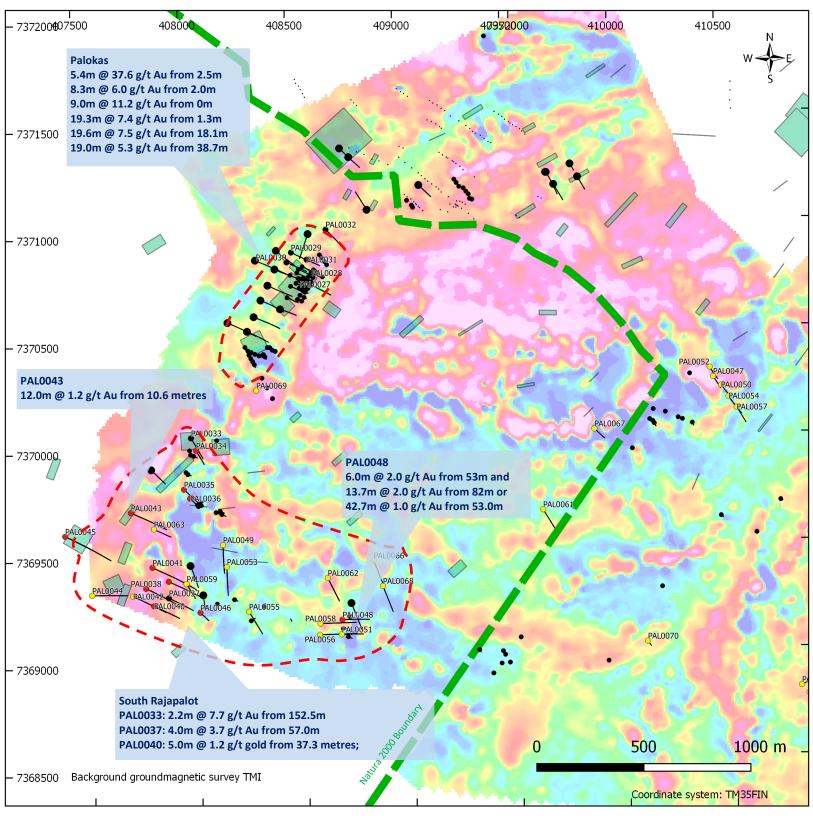
Table 3: Individual assay data from drill holes PAL0040, PAL0043 and PAL0048

Hole ID	Depth From (m)	Depth To (m)	Width (m)	Au g/t
PAL0040	37.3	38.3	1.0	1.7
PAL0040	38.3	39.3	1.0	1.6
PAL0040	39.3	40.3	1.0	1.8
PAL0040	40.3	41.3	1.0	<0.05
PAL0040	41.31	42.3	1.0	1.1
PAL0043	10.6	11.6	1.0	2.59
PAL0043	11.6	12.6	1.0	3.79
PAL0043	12.6	13.6	1.0	1.31
PAL0043	13.6	14.6	1.0	0.5
PAL0043	14.6	15.6	1.0	0.06
PAL0043	15.6	16.6	1.0	0.06
PAL0043	16.6	17.6	1.0	1.19
PAL0043	17.6	18.6	1.0	0.38
PAL0043	18.6	19.6	1.0	0.08
PAL0043	19.6	20.6	1.0	0.21
PAL0043	20.6	21.6	1.0	3.11
PAL0043	21.6	22.6	1.0	0.81
PAL0048	53	54	1.0	0.50
PAL0048	54	55.1	1.1	3.93
PAL0048	55.1	56	0.9	1.76
PAL0048	56	57	1.0	2.69
PAL0048	57	58	1.0	1.09
PAL0048	58	59	1.0	1.51
PAL0048	59	60	1.0	0.09
PAL0048	60	61	1.0	0.09
PAL0048	61	62	1.0	0.21
PAL0048	62	63	1.0	<0.05
PAL0048	63	64	1.0	<0.05
PAL0048	64	65	1.0	0.17
PAL0048	65	66	1.0	0.12
PAL0048	66	68	2.0	0.35
PAL0048	68	70	2.0	0.06
PAL0048	70	71	1.0	<0.05
PAL0048	71	72	1.0	<0.05
PAL0048	72	73	1.0	<0.05
PAL0048	73	74	1.0	<0.05
PAL0048	74	75	1.0	<0.05
PAL0048	75	76	1.0	<0.05
PAL0048	76	77	1.0	<0.05
PAL0048	77	78	1.0	<0.05
PAL0048	78	79	1.0	<0.05
PAL0048	79	80	1.0	<0.05

PAL0048	80	81	1.0	0.05
PAL0048	81	82	1.0	<0.05
PAL0048	82	84	2.0	0.49
PAL0048	84	86	2.0	0.61
PAL0048	86	86.8	0.8	1.59
PAL0048	86.8	87.82	1.0	1.66
PAL0048	87.8	88.5	0.7	3.74
PAL0048	88.5	89.2	0.7	0.61
PAL0048	89.2	90.2	1.0	6.34
PAL0048	90.2	91.2	1.0	3.88
PAL0048	91.2	92.3	1.1	0.05
PAL0048	92.3	93.3	1.0	5.59
PAL0048	93.3	94.3	1.0	0.84
PAL0048	94.3	95	0.7	1.72
PAL0048	95	95.7	0.7	2.79

Figure 1.

Rajapalot, drill hole locations, ground magnetics and VTEM Maxwell Plates


Collars

- Reported here
- Previously reported collars
- Waiting for assays

Geophysics

Maxwell plate modelled conductors

