

1305 – 1090 West Georgia Street, Vancouver, BC, V6E 3V7 Phone: +1 604 685 9316 / Fax: +1 604 683 1585

NEWS RELEASE June 10, 2020

Mawson Drills 5.0 metres at 5.9 g/t gold within thickest intercept to date at Palokas, Finland

Vancouver, Canada — <u>Mawson Resources Limited</u> ("Mawson") or (the "Company") (TSX:MAW) (Frankfurt:MXR) (PINKSHEETS: MWSNF) is pleased to announce results from the final 9 holes from the recent 37 hole, 14.1 kilometre winter drill program at the Company's 100%-owned Rajapalot project in Finland.

Highlights:

- In the thickest mineralized intersection drilled on the Rajapalot project to date, PAL0227, located in an interpreted fold hinge intersected (uncut) 44.6 metres @ 1.4 g/t gold, 452 ppm cobalt, 1.6 g/t gold equivalent ("AuEq") from 294.2 metres which includes 5.0 metres @ 5.9 g/t Au, 679 ppm Co, 6.3 g/t AuEq from 294.2 metres (Tables 1-4, Figures 1-3).
- ➤ PAL0227 is located between 40 to 70 metres west of previously reported drill hole <u>PAL0222</u> which intersected 7.2 metres @ 21.7 g/t gold from 267.9 metres. Intersections within PAL0227 include:
 - PAL0227: 5.0 metres @ 5.9 g/t Au, 679 ppm Co, 6.3 g/t AuEq from 294.2 metres;
 - PAL0227: 7.8 metres @ 1.3 g/t Au, 516 ppm Co, 1.6 g/t AuEq from 308.0 metres;
 - PAL0227: 9.2 metres @ 0.7 g/t Au, 840 ppm Co, 1.2 g/t AuEq from 321.8 metres, and;
 - PAL0227: 4.7 metres @ 2.6 g/t Au, 56 ppm Co, 2.7 g/t AuEq from 334.0 metres
- PAL0223 intersected 16.2 m @ 1.5 g/t gold, 407 ppm cobalt, 1.8 g/t AuEq or including 1.0 metre @ 12.8 g/t gold, 286 ppm Co, 13.0 g/t AuEq and was drilled 30 metres west of previously reported drill hole PAL0213 which intersected 17.7 metres @ 3.8 g/t gold, 880 ppm cobalt, 4.3 g/t AuEq" from 293.0 metres and 6.0 metres @ 9.2 g/t Au, 1,364 ppm Co, 10.0 g/t AuEq from 317.0 metres.
- PAL0230 at the Raja prospect intersected 4.0 metres @ 2.5 g/t gold from 551.0 metres including 1 metre @ 6.9 g/t gold, 204 ppm cobalt, 7.0 g/t AuEq;
 - PAL0230 is 300 metre step-out from the 2018 resource and is 550 metres vertically and 900 metres down plunge from surface, making it the **deepest mineralized intersection on the project** and demonstrating the Raja system remakes and continues at depth;
- An updated resource estimate is planned for Q3 2020;
 - As the 2020 winter program winds up, we note 19 of the top 40 high-grade drill intersections by grade-width AuEq, including 9 holes from the 37 drilled this year were drilled after the last resource update (2 g/t AuEq lower cut-off), indicating the significant depth potential of the Rajapalot project (Figure 1).
 - Since the December 2018 maiden resource, 80 holes have been drilled at Rajapalot, which include 19 of the top 40 high-grade drill intersections by grade-width AuEq (2 g/t AuEq lower cut);
 - The 2018 resource comprised 119 holes, of which 21 intersections are contained in the current top 40 drill hole intersections. These 21 intersections averaged 72 metres down-hole depth with an average 76 AuEq grade * metres;
 - A total of 9 intersections from the 37 holes drilled this year fall in the current top 40 drill hole intersections average a down-hole depth of 282 metres with an average of 80 AuEq grade * metres, indicating the continuity and increasing grade with depth of mineralization at the Rajapalot project (Figure 1).

Mr. Hudson, Chairman and CEO, states, "The last batch of drill results from our 14.1 kilometre winter program continues to deliver with the thickest as well as the deepest intersections found to date on the project. Geological modelling based

on core logging and assaying remains on schedule to deliver an updated resource at Rajapalot at the start of Q3 2020. We are also pleased that exploration programs will recommence shortly in Finland and Australia, with further information to be soon released."

Gold and cobalt assay results from the final nine drill holes from 2020 winter drill program which consisted of 37 drill holes for 14,132 metres (including one wedged drill hole and deepening an existing hole). Specifically, holes released here are from South Palokas prospect (PAL0209, 0219, 0223, 0224, 0229 and 0235), Palokas prospect (PAL0227, 0232) and the Raja prospect (PAL0230). A plan view of the completed drill holes and the locations of drill holes reported here are shown in Figures 1-3 with corresponding collar and assay data in Tables 1-3. Intersections in the plan view (Figure 2) and oblique section in Figure 3 are coloured by AuEq grade to show the higher-grade zones at Palokas and South Palokas. Further results reported here from the South Palokas prospect include PAL0224 which intersected 2.0 metres @ 1.7 g/t gold from 432.0 metres and PAL0229 intersected 0.8 metres @ 1.5 g/t gold, from 537.3 metres.

Assuming a predominant stratabound control, the true thickness of the mineralized interval is interpreted to be approximately 90% of the sampled thickness. Gold-only intersections are reported with a lower-cut of 0.5 g/t gold over a 1 metre width. No upper cut-off was applied. Where cobalt data becomes available, a lower cut of 0.3 g/t AuEq is used, based on modifying the open pit WhittleTM optimized open pit lower cut-off grade of 0.37 g/t AuEq developed for the 2018 resource recalculated to a dollar value per tonne against current averaged gold and cobalt prices (and therefore the 2018 resource cutoff 0.37 g/t AuEq is the same value per tonne as 0.30 g/t AuEq today). Where gold is below detection limit, half the cutoff grade is used in calculating the average grade for an interval and in determining the gold equivalent value.

Technical and Environmental Background

Up to five diamond drill rigs from the Arctic Drilling Company OY ("ADC") and Kati OY ("Kati") all with water recirculation and drill cuttings collection systems are used in the drill program. Core diameter is NQ2 (50.7 mm). Core recoveries are excellent and average close to 100% in fresh rock. After photographing and logging in Mawson's Rovaniemi facilities, core intervals averaging 1 metre for mineralized samples and 2 metres for barren samples are cut in half at the Geological Survey of Finland (GTK) core facilities in Rovaniemi, Finland. The remaining half core is retained for verification and reference purposes. Analytical samples are transported by commercial transport from site to the CRS Minlab Oy facility in Kempele, Finland. Samples were prepared and analyzed for gold using the PAL1000 technique which involves grinding the sample in steel pots with abrasive media in the presence of cyanide, followed by measuring the gold in solution with flame AAS equipment. Samples for multi-element analysis (including cobalt) are pulped at CRS Minlab, then transported by air to the MSA labs in Vancouver, Canada and analyzed using four acid digest ICP-MS methods. The QA/QC program of Mawson consists of the systematic insertion of certified standards of known gold content, duplicate samples by quartering the core, and blanks the within interpreted mineralized rock. In addition, CRS inserts blanks and standards into the analytical process.

Three-month average gold and cobalt prices have been used to calculate AuEq values according to the following:

- Average gold price \$1,580 per oz
- Average cobalt price \$14.50 per pound
- Resulting in gold equivalent formula of AuEq g/t = Au g/t + (Co ppm/1,589).

The host rocks to the gold and cobalt mineralization comprise sulphides (pyrrhotite>>pyrite) with biotite-muscovite-chlorite schists at South Palokas and Mg-Fe amphibole-biotite-chlorite rocks at Palokas. Veining and fracture fill minerals include pyrrhotite, magnetite and magnetite-pyrrhotite (+/- quartz, tourmaline). Retrograde chlorite after biotite, generations of secondary muscovite ("sericite") and vein-controlled chlorite+/- tourmaline and magnetite are also present. Preliminary hand-held XRF analysis confirms the presence of associated scheelite and molybdenite, the former visible under UV light as tiny veinlets and disseminations. The minerals associated with the gold are clearly post-metamorphic, reduced, and most likely driven by hydrothermal fluids from nearby granitoid intrusions. Chlorite and fine muscovite are regarded as the lowest temperature silicate minerals with gold, structurally controlled in apparent spatial association with quartz and/or K-feldspar veins. Altered rocks enclosing the mineralized package contain locally abundant talc and tourmaline.

All maps have been created within the KKJ3/Finland Uniform Coordinate System (EPSG:2393).

The qualified person for Mawson's Finnish projects, Dr. Nick Cook, President for Mawson and a Fellow of the Australasian Institute of Mining Metallurgy has reviewed and verified the contents of this release.

NI 43-101 Technical Report:

On December 19, 2018, Mawson filed an independent National Instrument 43-101 Technical Report (the "NI 43-101 Technical Report") on the Mineral Resource Estimate for the Raja and Palokas Prospects, at the 100% owned Rajapalot Project in Finland, (the "NI 43-101 Technical Report"), in support of the Company's news release dated <u>December 17, 2018</u>. The NI 43-101 Technical Report was authorized by Mr. Rod Webster of AMC Consultants Pty Ltd ("AMC") of Melbourne, Australia, and Dr. Kurt Simon Forrester of Arn Perspective of Surrey, England. Each of Mr. Webster and Dr. Forrester are independent "qualified persons" as defined by National Instrument 43-101. The NI 43-101 Technical Report may be found on the Company's website at www.mawsonresources.com or under the Company's profile on SEDAR at www.sedar.com. For the 2018 resource, the gold equivalent ("AuEq") value was calculated using averaged prices of the time, resulting in the following formula: AuEq g/t = Au g/t + (Co ppm/608) with assumed prices of Co \$30/lb; and Au \$1,250/oz. AuEq varies with Au and Co prices.

About Mawson Resources Limited (TSX:MAW, FRANKFURT:MXR, PINKSHEETS:MWSNF)

<u>Mawson Resources Limited</u> is an exploration and development company. Mawson has distinguished itself as a leading Nordic Arctic exploration company with a focus on the flagship Rajapalot gold project in Finland.

On behalf of the Board,

Further Information www.mawsonresources.com

1305 – 1090 West Georgia St., Vancouver, BC, V6E 3V7 Mariana Bermudez (Canada), Corporate Secretary, +1 (604) 685 9316, info@mawsonresources.com

"Michael Hudson"
Michael Hudson, Chairman & CEO

Forward-Looking Statement

This news release contains forward-looking statements or forward-looking information within the meaning of applicable securities laws (collectively, "forward-looking statements"). All statements herein, other than statements of historical fact, are forward-looking statements. Although Mawson believes that such statements are reasonable, it can give no assurance that such expectations will prove to be correct. Forward-looking statements are typically identified by words such as: believe, expect, anticipate, intend, estimate, postulate, and similar expressions, or are those, which, by their nature, refer to future events. Mawson cautions investors that any forward-looking statements are not guarantees of future results or performance, and that actual results may differ materially from those in forward-looking statements as a result of various factors, including, but not limited to, capital and other costs varying significantly from estimates, changes in world metal markets, changes in equity markets, planned drill programs and results varying from expectations, delays in obtaining results, equipment failure, unexpected geological conditions, local community relations, dealings with non-governmental organizations, delays in operations due to permit grants, environmental and safety risks, and other risks and uncertainties disclosed under the heading "Risk Factors" in Mawson's most recent Annual Information Form filed on www.sedar.com. Any forward-looking statement speaks only as of the date on which it is made and, except as may be required by applicable securities laws, Mawson disclaims any intent or obligation to update any forward-looking statement, whether as a result of new information, future events or results or otherwise.

Figure 1: Plan of Rajapalot showing historic drilling and high-grade intersections using a lower cut-off grade of 2 g/t gold. The plan view of the 2018 NI43-101 resource is also indicated using a 0.37 g/t AuEq lower cut. Note the modelled ground TEM plates that not associated with the 2018 NI43-101 resource are virtually untested by drilling, and form potential new target areas. Intersections reported here are shown with bold text (see Figure 2 for more detail of drilling at Palokas and South Palokas prospects).

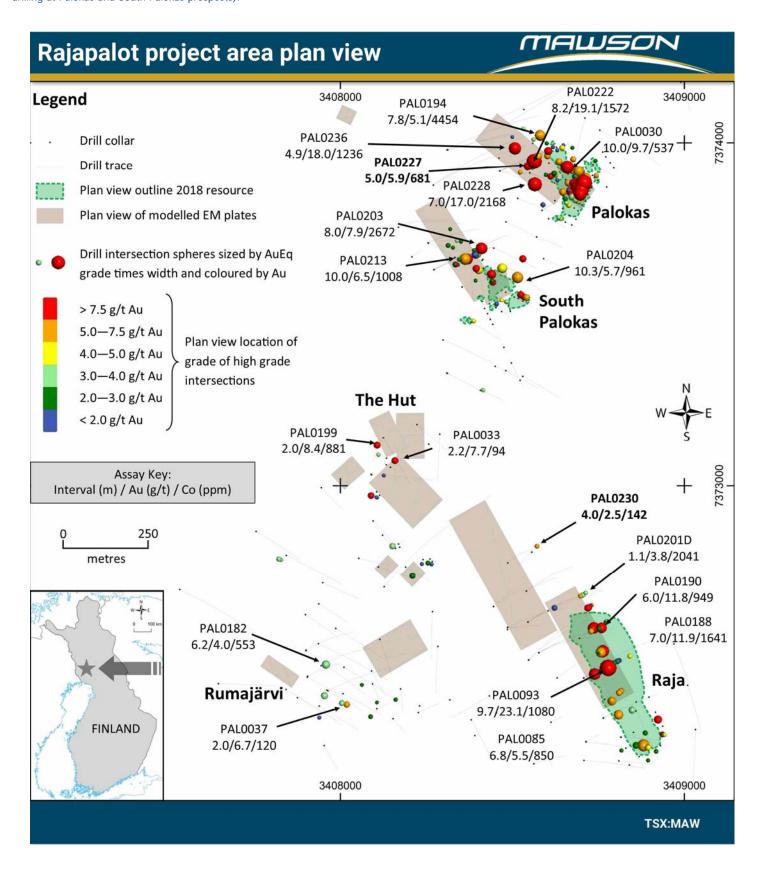


Figure 2: Plan view of coloured dots representing high-grade intersections using a 2.0 g/t AuEq cutoff for Palokas and South Palokas prospects. Only drill intersections reported in the recent 2020 drill campaign are included here (surface projection of these resources shown here are 0.37 g/t AuEq lower-cut). Drill holes in bold text represent those reported in this release.

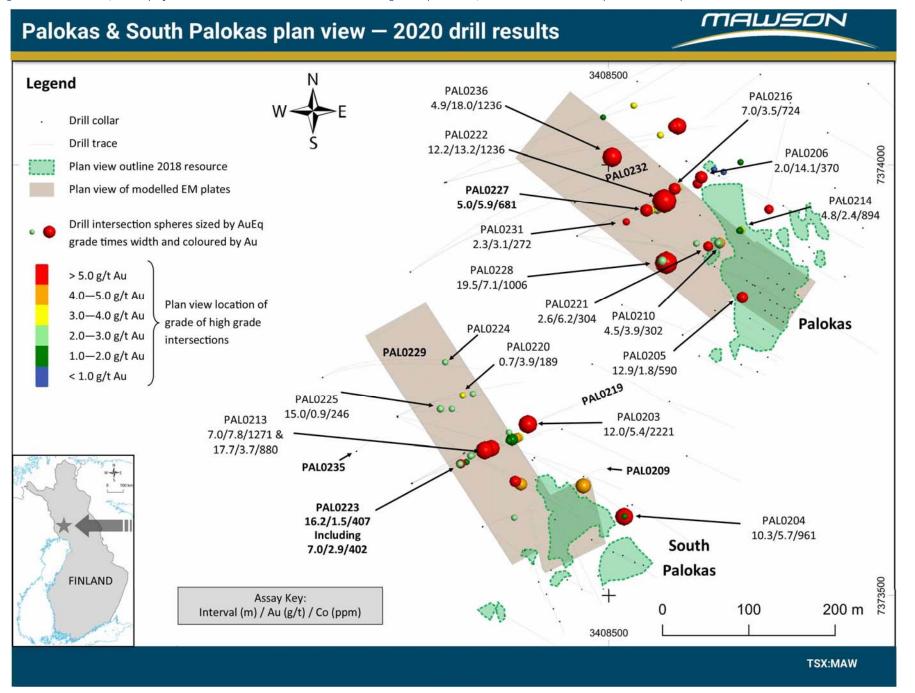


Figure 3: Long section showing outline of 2018 resource (>2 g/t AuEq lower-cut) and significant grade-width intersections (coloured dots) showing new results from holes released here are from South Palokas (PAL0223) and Palokas (PAL0227) prospects extending mineralization beyond the current resource areas (red dashed outlines). The view is looking onto mineralized surface at Palokas and South Palokas (this view is looking at 60 degrees towards 120). The pale shaded area represents the current estimated limits to mineralized rocks, although testing between Palokas and South Palokas is restricted to just four shallow drill holes and there is no testing of the southwestern margin of South Palokas.

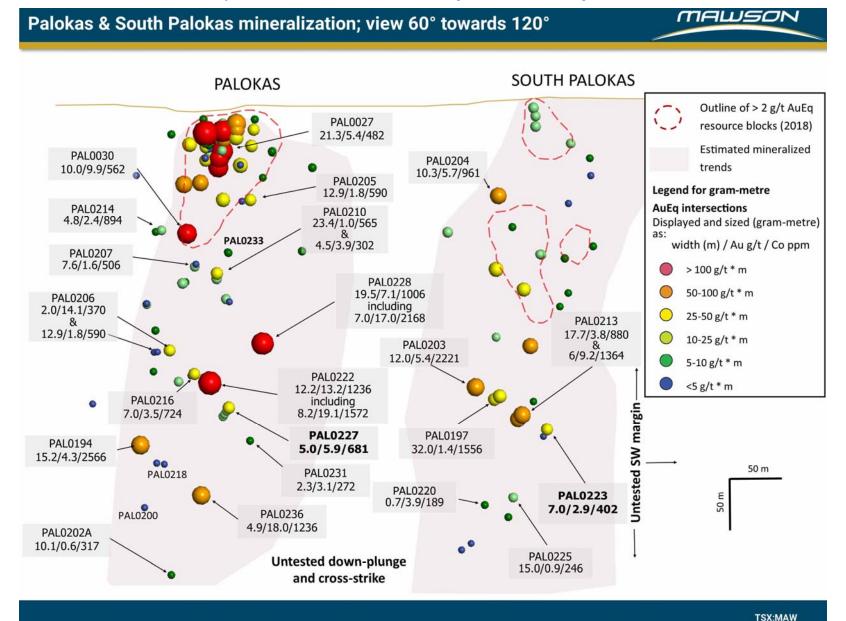


Table 1: Collar Information from 2019-20 Winter drilling at the Rajapalot Project (Finnish Grid, Projection KKJ3; the "A" postscript refers to a daughter hole off the primary hole and the depth range of the drill hole is indicated)

HoleID	East	North	Azimuth	Dip	RL	Depth (m)	Prospect	Comment
PAL0201D, extended	3408545.6	7372603.2	56.0	-67.2	179.3	392.2 to 524.6	Raja	Au & Co reported 20 Apr. 2020
PAL0202	3408978.0	7374402.6	229	-45	175.9	769.6	Palokas	No significant assays 28 Feb., 2020
PAL0202A	3408978.0	7374402.6	229	-45	175.9	451.0 to 826.7	Palokas	<u>Au reported 5 Feb, 2020, Co 28</u> <u>Feb, 2020</u>
PAL0203	3408272.5	7373630.5	058	-63	173.6	415.5	South Palokas	<u>Au reported 5 Feb, 2020, Co 28</u> <u>Feb, 2020</u>
PAL0204	3408522.0	7373604.3	235	-85	173.4	149.2	South Palokas	<u>Au reported 20 Jan, 2020;</u> <u>Co Feb</u> <u>28, 2020</u>
PAL0205	3408586.2	7373802.7	058	-49	173.5	191.5	Palokas	<u>Au reported 20 Jan, 2020;</u> <u>Co Feb</u> <u>28, 2020</u>
PAL0206	3408463.5	7373917.2	063	-57	173.7	326.2	Palokas	<u>Au reported 5 Feb, 2020, Co 28</u> <u>Feb, 2020</u>
PAL0207	3408609.8	7373894.5	057	-76	173.7	200.2	Palokas	<u>Au reported 5 Feb, 2020, Co 28</u> <u>Feb, 2020</u>
PAL0208	3408540.7	7372692.8	052	-75	179.1	555.4	Raja	No significant assays 20 Apr, 2020
PAL0209	3408471.1	7373638.3	058	-82	173.5	200.8	South Palokas	No significant assays, reported here
PAL0210	3408609.8	7373894.5	054	-86	173.7	198.0	Palokas	Au & Co reported 28 Feb 2020
PAL0211	3408463.5	7373917.2	063	-50	173.7	232.2	Palokas	Au & Co reported 09 Mar 2020
PAL0212	3408255.2	7373708.2	059	-75.5	172.5	492.6	South Palokas	No significant assays 20 Apr, 2020
PAL0213	3408272.5	7373630.5	060	-73.5	173.6	509.3	South Palokas	Au & Co reported 28 Feb 2020
PAL0214 PAL0215	3408609.8	7373894.5 7374105.0	057	-52	173.7	154.3	Palokas Palokas	Au & Co reported 09 Mar 2020
PAL0215	3408676.1 3408463.5	7374105.0	237 062	-77.5 -65	173.8 173.7	395.5 344.6	Palokas	Au & Co reported 27 May 2020 Au & Co reported 27 May 2020
PAL0216	3408540.7	7373917.2	052	-79.5	179.1	519.2	Raja	No significant assays. 20 Apr. 2020
PAL0218	3408310.5	7373979.7	075	-58	173.8	469.4	Palokas	Au & Co reported 20 Apr., 2020
PAL0219	3408272.5	7373630.5	059	-57.9	173.6	419.7	South Palokas	No significant assays, reported here
PAL0220	3408255.2	7373708.2	062	-80	172.5	501.1	South Palokas	Au & Co reported 20 Apr. 2020
PAL0221	3408463.5	7373917.2	096	-53.5	173.7	280.4	Palokas	Au <u>reported 09 Mar 2020,</u> Co 27 May 2020
PAL0222	3408463.5	7373917.2	066	-71.5	173.7	355.1	Palokas	Au <u>reported 09 Mar 2020,</u> Co <u>27 May 2020</u>
PAL0223	3408272.5	7373630.5	061	-79	173.6	404.1	South Palokas	Results reported here
PAL0224	3408168.5	7373753.6	063	-78.5	171.4	560.6	South Palokas	Results reported here
PAL0225	3408255.2	7373708.2	070	-85	172.5	490.9	South Palokas	Au & Co reported 20 Apr. 2020
PAL0226	3408540.7	7372692.8	053	-83.5	179.1	487.8	Raja	Au & Co reported 20 Apr. 2020
PAL0227	3408463.5	7373917.2	069	-77.5	173.7	359.4	Palokas	Results reported here
PAL0228	3408463.5	7373917.2	110	-67	173.7	311.4	Palokas	Au & Co reported 20 Apr., 2020
PAL0229	3408168.5	7373753.6	056	-81.2	171.4	635.5	South Palokas	Results reported here
PAL0230	3408486.6	7372775.8	047	-82	177.0	631.4	Raja	Results reported here
PAL0231 PAL0232	3408463.5 3408270.3	7373917.2 7373875.9	073 057	-82.7 -60	173.7 173.8	395.6 524.0	Palokas Palokas	Au & Co reported 27 May 2020 No significant assays,
PAL0233	3408585.8	7373802.5	058	-70	173.5	167.5	Palokas	reported here No significant assays,
PAL0234	3408270.3	7373875.9	054	-56	173.8	178.7	Palokas	reported 27 May 2020 Hole aborted
PAL0234 PAL0235	3408270.3	7373667.6	047	-81	173.8	176.9	South Palokas	No significant assays,
PAL0236	3408270.3	7373875.9	049	-56	173.8	530.0	Palokas	reported here Au & Co reported 27 May 2020
FMLUZ30	3400270.3	1313013.9	049	-30	1/3.0	550.0	raiUKas	Au α Co <u>reported 27 May 2020</u>

Table 2: Intersections from the 2019-20 Winter Drill Program. Intersections are reported with a lower cut of 0.3g/t AuEq (using updated gold and cobalt prices of \$1,580 per ounce and 14.50 per pound respectively) over 1 metre lower cut. No upper cut-off was applied.

Prospect	HoleID	From (m)	To (m)	Width (m)	Au g/t	Co ppm	AuEq g/t
Raja	PAL0201D1	450.75	451.85	1.10	3.82	2041	5.1
Raja	PAL0201D	451.85	453.00	1.15	0.23	23	0.2
Palokas	PAL0202A	771.4	781.5	10.1	0.6	317	0.8
South Palokas	PAL0203	303.0	315.0	12.0	5.4	2221	6.8
including		303.0	311.0	8.0	7.9	2672	9.6
South Palokas	PAL0204	88.2	89.1	0.9	1.7	881	2.3
South Palokas	PAL0204	93.7	104.0	10.3	5.7	961	6.3
inclu	ıding	97.0	103.0	6.0	8.4	901	8.9
Palokas	PAL0205	95.0	107.9	12.9	1.8	590	2.2
inclu	ıding	101.0	104.0	3.0	6.4	606	6.8
Palokas	PAL0205	114.0	118.0	4.0	<0.05	820	0.5
Palokas	PAL0206	249.8	255.2	5.4	0.1	1189	0.8
Palokas	PAL0206	262.2	264.2	2.0	14.1	370	14.4
Palokas	PAL0206	296.4	299.2	2.8	0.8	880	1.3
Palokas	PAL0206	305.3	308.3	3.0	<0.05	2324	1.5
Palokas	PAL0207	117.3	119.3	2.0	<0.05	678	0.4
Palokas	PAL0207	121.6	125.6	4.0	0.3	383	0.6
Palokas	PAL0207	145.2	148.6	3.4	0.7	552	1.1
Palokas	PAL0207	150.8	158.4	7.6	1.6	506	2.0
Palokas	PAL0207	164.0	166.0	2.0	<0.05	578	0.4
Palokas	PAL0207	170.8	172.0	1.2	<0.05	1398	0.9
Palokas	PAL0210	128.3	151.7	23.4	1.0	565	1.4
Palokas	PAL0210	153.6	158.1	4.5	3.9	302	4.1
Palokas	PAL0211	246.4	254.3	7.9	0.1	1482	1.0
Palokas	PAL0211	293.9	296.8	2.9	0.9	159	1.0
South Palokas	PAL0213	250.2	252.0	1.8	2.8	150	2.9
South Palokas	PAL0213	256.0	257.0	1.0	2.2	222	2.3
South Palokas	PAL0213	261.0	263.0	2.0	0.8	257	1.0
South Palokas	PAL0213	293.0	310.7	17.7	3.8	880	4.3
inclu	ıding	294.0	304.0	10.0	6.5	1012	7.2
South Palokas	PAL0213	317.0	323.0	6.0	9.2	1364	10.0
Palokas	PAL0214	119.9	124.7	4.8	2.4	894	2.9
inclu	ıding	122.0	123.7	1.7	6.4	761	6.8
Palokas	PAL0215	294.9	298.6	3.7	0.7	194	0.9
Palokas	PAL0216	259.0	266.0	7.0	3.5	731	3.9
inclu	ıding	262.0	266.0	4.0	6.0	456	6.3
Palokas	PAL0216	273.9	274.9	1.0	3.2	99	3.2
Palokas	PAL0216	319.0	321.0	2.0	7.4	3	7.4
Palokas	PAL0218	403.0	410.0	7.0	0.2	504	0.5

							1
Palokas	PAL0218	432.4	433.4	1.0	4.0	378	4.2
Palokas	PAL0218	448.3	450.3	2.0	0.0	908	0.6
South Palokas	PAL0220	366.0	367.0	1.0	0.4	76	0.4
South Palokas	PAL0220	370.0	371.0	1.0	0.3	189	0.5
South Palokas	PAL0220	376.0	376.7	0.7	3.9	189	4.0
Palokas	PAL0221	213.0	216.0	3.0	1.0	304	1.2
Palokas	PAL0221	234.3	236.9	2.6	6.2	304	6.4
Palokas	PAL0222	262.8	264.8	2.0	0.0	798	0.5
Palokas	PAL0222	266.9	279.1	12.2	13.2	1326	14.0
inclu	including		275.1	8.2	19.1	1572	20.1
South Palokas	PAL0223	291.0	307.2	16.2	1.5	407	1.8
inclu	ıding	292.0	294.0	2.0	2.3	580	2.7
including		296.0	297.0	1.0	12.8	286	13.0
South Palokas	PAL0224	432.0	434.0	2.0	1.7	50	1.7
South Palokas	PAL0225	344.0	359.0	15.0	0.9	246	1.1
South Palokas	PAL0225	415.8	420.8	5.0	1.3	363	1.5
Raja	PAL0226	450.6	455.6	5.0	0.4	694	0.8
Palokas	PAL0227	294.2	299.2	5.0	5.9	679	6.3
inclu	ıding	296.2	299.2	3.0	9.3	604	9.7
Palokas	PAL0227	301.1	305.0	3.8	0.5	756	1.0
Palokas	PAL0227	308.0	315.7	7.8	1.3	516	1.6
Palokas	PAL0227	321.8	331.0	9.2	0.7	840	1.2
Palokas	PAL0227	334.0	338.7	4.7	2.6	56	2.7
Palokas	PAL0228	241.8	261.3	19.5	7.1	1006	7.8
inclu	ıding	251.4	258.4	7.0	17.0	2168	18.4
South Palokas	PAL0229	537.3	538.1	0.8	1.5	78	1.5
Raja	PAL0230	551.0	555.0	4.0	2.5	142	2.6
Palokas	PAL0231	342.0	344.3	2.3	3.1	272	3.1
Palokas	PAL0236	449.7	454.6	4.9	18.0	1317	18.8

Table 3: Individual assay data from drill holes reported in this press release.

HoleID	From (m)	To (m)	Width (m)	Au g/t	Co ppm	AuEq
PAL0223	291.0	292.0	1.0	0.64	445	0.9
PAL0223	292.0	293.0	1.0	2.69	870	3.2
PAL0223	293.0	294.0	1.0	1.95	291	2.1
PAL0223	294.0	295.0	1.0	0.4	414	0.7
PAL0223	295.0	296.0	1.0	0.79	70	0.8
PAL0223	296.0	297.0	1.0	12.8	286	13.0
PAL0223	297.0	298.0	1.0	0.67	433	0.9
PAL0223	298.0	298.9	0.9	0.06	336	0.3
PAL0223	298.9	300.0	1.1	0.17	384	0.4
PAL0223	300.0	301.0	1.0	0.15	463	0.4
PAL0223	301.0	302.0	1.0	0.12	309	0.3
PAL0223	302.0	303.0	1.0	0.45	368	0.7
PAL0223	303.0	304.0	1.0	0.24	204	0.4
PAL0223	304.0	305.0	1.0	0.39	283	0.6
PAL0223	305.0	306.0	1.0	0.88	895	1.4
PAL0223	306.0	307.2	1.2	1.8	445	2.1
PAL0224	432.0	433.0	1.0	0.5	35	0.5
PAL0224	433.0	434.0	1.0	2.8	66	2.8
PAL0224	434.0	435.0	1.0	0.1	39	0.1
PAL0224	435.0	436.0	1.0	0.2	57	0.2
PAL0224	436.0	437.0	1.0	1.1	103	1.1
PAL0224	437.0	438.0	1.0	1.2	641	1.6
PAL0224	438.0	438.9	0.9	0.3	131	0.4
PAL0227	294.2	295.2	1.0	0.8	961	1.4
PAL0227	295.2	296.2	1.0	0.7	619	1.1
PAL0227	296.2	297.2	1.0	8.4	894	8.9
PAL0227	297.2	298.2	1.0	13.6	740	14.1
PAL0227	298.2	299.1	1.0	5.8	157	5.9
PAL0227	299.1	300.1	1.0	< 0.05	136	0.1
PAL0227	300.1	301.1	1.0	0.1	381	0.2
PAL0227	301.1	302.1	1.0	0.1	976	0.7
PAL0227	302.1	304.0	1.9	1.0	799	1.5
PAL0227	304.0	305.0	1.0	0.1	457	0.4
PAL0227	305.0	306.0	1.0	<0.05	149	0.1
PAL0227	306.0	307.0	1.0	< 0.05	41	< 0.05
PAL0227	307.0	308.0	1.0	0.1	343	0.3
PAL0227	308.0	309.2	1.2	0.1	284	0.3
PAL0227	309.2	310.7	1.6	0.2	228	0.4
PAL0227	310.7	311.7	1.0	0.2	276	0.4
PAL0227	311.7	312.7	1.0	4.2	658	4.6
PAL0227	312.7	313.7	1.0	3.6	1840	4.8
PAL0227	313.7	314.7	1.0	1.2	166	1.8
PAL0227	314.7	315.7	1.0	0.4	368	0.6
PAL0227	315.7	317.7	2.0	< 0.05	21	< 0.05
PAL0227	317.7	319.7	2.0	< 0.05	14	< 0.05
PAL0227	319.7	320.5	0.8	< 0.05	96	0.1

PAL0227	320.5	321.8	1.4	<0.05	358	0.3
PAL0227	321.8	323.3	1.5	0.4	689	0.8
PAL0227	323.3	324.3	1.0	0.1	1273	0.9
PAL0227	324.3	325.3	1.0	0.2	905	0.8
PAL0227	325.3	326.9	1.7	0.2	243	0.9
PAL0227	326.9	328.0	1.1	0.5	1946	1.7
PAL0227	328.0	329.0	1.0	1.1	434	1.4
PAL0227	329.0	330.0	1.0	1.0	1276	1.8
PAL0227	330.0	331.0	1.0	2.4	299	2.6
PAL0227	331.0	332.0	1.0	<0.05	53	< 0.05
PAL0227	332.0	333.0	1.0	<0.05	54	< 0.05
PAL0227	333.0	334.0	1.0	<0.05	92	<0.05
PAL0227	334.0	335.4	1.4	1.5	46	1.6
PAL0227	335.4	336.4	1.0	2.3	29	2.3
PAL0227	336.4	337.4	1.0	6.8	68	6.8
PAL0227	337.4	338.7	1.3	0.9	77	1.0
PAL0229	537.3	538.1	0.8	1.5	78	1.5
PAL0229	538.0	539.0	1.0	0.1	62	0.1
PAL0229	539.0	540.0	1.0	<0.05	70	<0.05
PAL0229	540.0	541.0	1.0	0.4	265	0.6
PAL0229	541.0	542.0	1.0	0.7	275	0.9
PAL0230	551.0	552.0	1.0	1.5	84	1.5
PAL0230	552.0	553.0	1.0	1.2	63	1.3
PAL0230	553.0	554.0	1.0	6.9	204	7.0
PAL0230	554.0	555.0	1.0	0.3	216	0.4
PAL0230	555.0	556.0	1.0	0.1	147	0.2
PAL0230	556.0	557.0	1.0	<0.05	172	0.1
PAL0230	557.0	558.0	1.0	0.1	532	0.5

Table 4: The top 40 high-grade intersections from the Rajapalot project. Note that 19 of these intersections (in bold) were not included in the 2018 Inferred Resource. Intersections are reported with a lower cut of 2.0 g/t AuEq (using updated gold and cobalt prices of \$1,580 per ounce and 14.50 per pound respectively) over 1 metre lower cut. No upper cut-off was applied. Note that 19 of the top 40 intersections by grade-width for the Rajapalot project were drilled in the most recent program.

HoleID	From (m)	To (m)	Interval (m)	Au g/t	Co ppm	AuEq	AuEq g*w
PAL0093	252.2	261.8	9.7	23.1	1080	23.7	229.2
PRAJ0009	5.9	7.9	2.0	99.9	1196	100.6	201.2
PAL0222	266.9	275.1	8.2	19.1	1572	20.1	165.0
PRAJ0006	1.3	16.3	15.0	9.2	769	9.7	144.9
PAL0228	251.4	258.4	7.0	17.0	2168	18.4	128.8
PRAJ0107	26.7	32.7	6.0	20.4	705	20.8	125.1
PAL0030	110.2	120.2	10.0	9.7	562	10.1	101.0
PAL0027	34.4	41.2	6.8	14.1	659	14.5	98.7
PAL0236	449.7	454.7	5.0	18.0	1317	18.8	94.2
PAL0188	321.6	328.6	7.0	11.9	1641	12.9	90.6
PRAJ0003	0.0	3.0	3.0	27.5	851	28.0	84.1
PAL0203	303.0	311.0	8.0	7.9	2672	9.6	76.7
PAL0190	381.8	387.8	6.0	11.8	949	12.4	74.6
PAL0075	82.2	91.0	8.8	7.5	1229	8.3	73.0
PAL0092	246.0	249.0	3.0	23.3	1413	24.2	72.7
PAL0213	294.0	304.0	10.0	6.5	1008	7.1	71.1
PAL0204	93.7	103.0	9.3	6.3	1018	6.9	64.2
PAL0194	425.1	432.9	7.8	5.1	4454	7.9	61.7
PAL0118	381.0	382.6	1.6	37.3	1143	38.0	60.8
PAL0213	317.0	323.0	6.0	9.0	1364	9.9	59.4
PAL0188	307.7	315.6	8.0	5.9	1840	7.0	55.8
PRAJ0114	61.1	68.1	7.0	7.1	947	7.7	53.8
PRAJ0004	2.0	10.3	8.3	5.9	454	6.2	51.4
PAL0190	374.0	378.0	4.0	11.2	1758	12.3	49.3
PRAJ0022	10.0	24.0	14.0	3.0	580	3.4	47.7
PAL0198	171.2	178.8	7.6	5.0	1484	6.0	45.3
PRAJ0109	42.7	49.7	7.0	6.0	494	6.3	44.1
PAL0085	125.1	131.9	6.8	5.5	850	6.0	40.7
PAL0016	211.0	214.4	3.4	11.0	475	11.3	38.4
PRAJ0109	38.7	39.7	1.0	34.9	574	35.3	35.3
PRAJ0111	42.1	44.9	2.8	11.7	1218	12.5	35.0
PAL0062	186.5	192.5	6.0	5.3	369	5.5	33.2
PRAJ0025	16.9	22.8	5.9	5.4	339	5.6	33.1
PAL0227	296.2	299.2	3.0	9.3	607	9.7	29.1
PRAJ0005	10.7	19.2	8.6	3.1	474	3.4	28.8
PAL0173	276.1	281.0	4.9	4.6	1805	5.8	28.5
PAL0206	262.2	263.2	1.0	28.0	377	28.2	28.2
PAL0182	87.0	93.2	6.2	4.0	553	4.3	26.7
PAL0197	303.5	312.2	8.8	1.5	2341	3.0	26.2
PAL0119	16.0	19.0	3.0	8.6	68	8.7	26.0