

1305 – 1090 West Georgia Street, Vancouver, BC, V6E 3V7 Phone: +1 604 685 9316 / Fax: +1 604 683 1585

NEWS RELEASE

DECEMBER 13, 2021

MAWSON DRILLS 3.0 m @ 41.4 g/t GOLD AND 12.0 % ANTIMONY WITHIN 11.7m @ 12.4 g/t GOLD AND 3.6 % ANTIMONY IN DEEPEST HOLE AT SUNDAY CREEK, VICTORIA, AUSTRALIA

Vancouver, Canada — <u>Mawson Gold Limited</u> ("Mawson" or the "Company") (TSX:MAW) (Frankfurt:MXR) (PINKSHEETS: MWSNF) is pleased to announce assay results from three diamond drill holes (MDDSC023-25) drilled at the 100%-owned Sunday Creek project in the Victorian Goldfields of Australia. The Sunday Creek epizonal-style gold project is located 56 kilometres north of Melbourne and within 19,365 hectares of granted exploration tenements.

Highlights:

- > 11.7 metres @ 12.4 g/t Au and 3.6 % Sb (16.0 g/t AuEq) from 362.0 metres in hole MDDSC025, including:
 - o **3.0 metres @ 41.4 g/t Au and 12.0 % Sb (53.4 g/t AuEq)** from 364.0 metres;
 - 0.5 metres @ 14.3 g/t Au and 4.4 % Sb (18.7 g/t AuEq) from 370.8 metres;
- > MDDSC025 is the deepest drill hole drilled at Sunday Creek (320 metres vertical depth), and highest-grade gold-stibnite mineralization to date on the project (Tables 1-3, Figures 1-3)
- > The proposed <u>spin-out of Mawson's Australian assets</u> onto the Australian Stock Exchange ("ASX") is progressing well, with Mawson recently receiving ASX's positive reply for Southern Cross Gold's In-principle Advice submission to support Southern Cross Gold's suitability for admission to the official list of the ASX. Southern Cross Gold is now moving to the pre-IPO private placement financing stage to fund continued exploration, drilling, working capital and IPO expenses in Australia.

Michael Hudson, Executive Chairman, states: "Sunday Creek is one of the best discoveries to be made in the modern renaissance of the Victorian goldfields. With bolder and larger step-outs the project continues to deliver. Our deepest hole at the project to date has intersected the highest grades and widths we have seen. This is the eighth intersection exceeding 100 "grade (g/t) x width (m)" on the project. Mineralization remains open at depth and the system continues 10 kilometres to the east covering historic mines, without a single drill hole test."

MDDSC025 is a large step-out, located 380 metres east of MDDSC021 (Figure 1), the previous deepest intersection drilled at the project (21.7 metres @ 4.7 g/t Au and 1.0 % Sb (5.6 g/t AuEq from 274.7 metres) (Figure 2). MDDSC025 (Figure 3) intersected:

- > 11.7 metres @ 12.4 g/t Au and 3.6 % Sb (16.0 g/t AuEq) from 362.0 metres in hole MDDSC025, including:
 - 3.0 metres @ 41.4 g/t Au and 12.0 % Sb (53.4 g/t AuEq) from 364.0 metres or 6.5 metres @ 20.6 g/t Au and 6.0 % Sb (26.6 g/t AuEq) from 362.5 metres;
 - 0.5 metres @ 14.3 g/t Au and 4.4 % Sb (18.7 g/t AuEq) from 370.8 metres;

MDDSC024 metres at Gladys, drilled 180 metres SW of MDDSC025 intersected:

5.0 metres @ 1.1 g/t Au and 0.3 % Sb (1.5 g/t AuEg) from 195.0 metres;

MDDSC022 at Rising Sun and MDDSC023 at Gladys did not intersect significant mineralization (Figure 1).

Mawson has now completed twenty-six drill holes (MDDSC001-026) for 6,447.8 metres at the Sunday Creek gold-antimony project since mid-2021 (Figures 1 and 2). Assays from 25 out of the 26 finalized holes have been released. The drill rig will

return to Sunday Creek in January 2022 after completing two diamond drill holes at the Whroo JV project. Geophysical surveys (3D induced polarization and ground magnetics) and detailed LiDAR surveys have been completed. Mawson has also completed a 1,200-point soil sampling program at Sunday Creek extending east-northeast from the drilling area to test the 11-kilometre trend of historically mined epizonal dyke-hosted mineralization within Mawson's tenured areas. The integration of the LiDAR, soil sampling data, rock chips and geophysics is key to the expansion of the project along strike.

The <u>previously announced</u> spin-out Mawson's Australian assets into a new entity, Southern Cross Gold Pty Ltd. ("Southern Cross Gold") via an Initial Public Offering ("IPO") for admission to the official list of ASX Limited ("ASX" or "Australian Stock Exchange") is progressing well. ASX's positive reply has now been received for Southern Cross Gold's In-principle Advice submission to support Southern Cross Gold's suitability for admission to the official list of the ASX. Southern Cross Gold will now move to the pre-IPO private placement financing stage to fund continued exploration, drilling, working capital and IPO expenses in Australia from sophisticated and professional ("accredited") investors.

Technical and Environmental Background: Tables 1–3 provide collar and assay data. The true thickness of the mineralized interval is interpreted to be approximately 60 % of the sampled thickness. All drill results quoted have a lower cut of 0.3 g/t Au cut over a 2.0 metre width, with higher grades reported with a 5 g/t Au cut over 1.0 metre applied unless otherwise stated. Lab duplicates and quarter core field duplicates demonstrate that mineralization is homogenous with a low nugget effect evident. A diamond drill rig from contractor Starwest Pty Ltd was used in the program. Core diameter is HQ (63.5 mm) and oriented with excellent core recoveries averaging close to 100% in both oxidized and fresh rock. After photographing and logging in Mawson's core logging facilities in Nagambie, intervals were diamond sawn in half by Mawson personnel. Half core is retained for verification and reference purposes. Analytical samples are transported to On Site Laboratory Services' Bendigo facility which operates under both an ISO 9001 and NATA quality systems. Samples were prepared and analyzed for gold using the fire assay technique (PE01S method; 25 gram charge), followed by measuring the gold in solution with flame AAS equipment. Samples for multi-element analysis (BM011 and over-range methods as required) use aqua regia digestion and ICP-MS analysis. The QA/QC program of Mawson consists of the systematic insertion of certified standards of known gold content, quarter core duplicates and blanks within interpreted mineralized rock. In addition, On Site inserts blanks and standards into the analytical process.

Gold Equivalent Calculation: It is the opinion of Mawson that all the elements included in the metal equivalent calculation have a reasonable potential to be recovered. The gold equivalent (AuEq) was calculated based on commodity prices as 21 March 2021. The AuEq formula is as follows: AuEq(g/t) = (Aug/t) + (XX * Sb%), where XX = (US\$5,600/100) / (US\$1,750/31.1035) and the gold price = US\$1,750/02 and antimony price = US\$5,600/tonne.

Qualified Person: Dr Nick Cook (FAusMM), Chief Geologist for the Company, is a qualified person as defined by National Instrument 43-101 – Standards of Disclosure or Mineral Projects and has prepared or reviewed the preparation of the scientific and technical information in this press release.

About Mawson Gold Limited (TSX:MAW, FRANKFURT:MXR, OTCPINK:MWSNF)

<u>Mawson Gold Limited</u> is an exploration and development company. Mawson has distinguished itself as a leading Nordic Arctic exploration company with a focus on the flagship Rajapalot gold-cobalt project in Finland. Mawson also owns or is joint venturing into three high-grade, historic epizonal goldfields covering 470 square kilometres in Victoria, Australia and is well placed to add to its already significant gold-cobalt resource in Finland.

On behalf of the Board,

Further Information www.mawsongold.com

1305 – 1090 West Georgia St., Vancouver, BC, V6E 3V7 Mariana Bermudez (Canada), Corporate Secretary, +1 (604) 685 9316, info@mawsongold.com

"Michael Hudson"

Michael Hudson, Executive Chairman

Forward-Looking Statement

This news release contains forward-looking statements or forward-looking information within the meaning of applicable securities laws (collectively, "forward-looking statements"). All statements herein, other than statements of historical fact, are forward-looking statements. Although Mawson believes that such statements are reasonable, it can give no assurance that such expectations will prove to be correct. Forward-looking statements are typically identified by words such as: believe, expect, anticipate, intend, estimate, postulate, and similar expressions, or are those, which, by their nature, refer to future events. Mawson cautions investors that any forward-looking statements are not guarantees of future results or performance, and that actual results may differ materially from those in forwardlooking statements as a result of various factors, including, but not limited to, timing and successful completion of exploration and drill programs planned at Sunday Creek and the Whroo Project, timing and successful completion of Southern Cross Gold's Pre-IPO Private Placement, IPO and listing of Southern Cross Gold's common shares on ASX, capital and other costs varying significantly from estimates, changes in world metal markets, changes in equity markets, the potential impact of epidemics, pandemics or other public health crises, including the current pandemic known as COVID-19 on the Company's business, risks related to negative publicity with respect to the Company or the mining industry in general; planned drill programs and results varying from expectations, delays in obtaining results, equipment failure, unexpected geological conditions, local community relations, dealings with non-governmental organizations, delays in operations due to permit grants, environmental and safety risks, and other risks and uncertainties disclosed under the heading "Risk Factors" in Mawson's most recent Annual Information Form filed on www.sedar.com. Any forward-looking statement speaks only as of the date on which it is made and, except as may be required by applicable securities laws, Mawson disclaims any intent or obligation to update any forward-looking statement, whether as a result of new information, future events or results or otherwise.

Figure 1: Plan location of the Sunday Creek Project historic mines and location Mawson drilling from this new release (MDDSC0022-25).

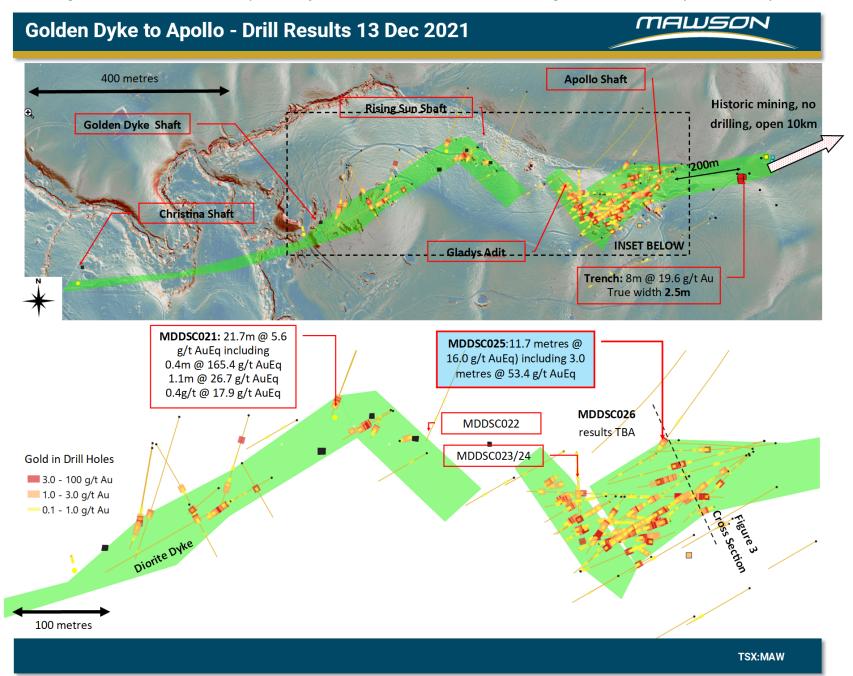


Figure 2: Longitudinal ("Long") Section of the Golden Dyke to Apollo Mine Area highlighting Mawson drillholes MDDSC0022-25 reported here.

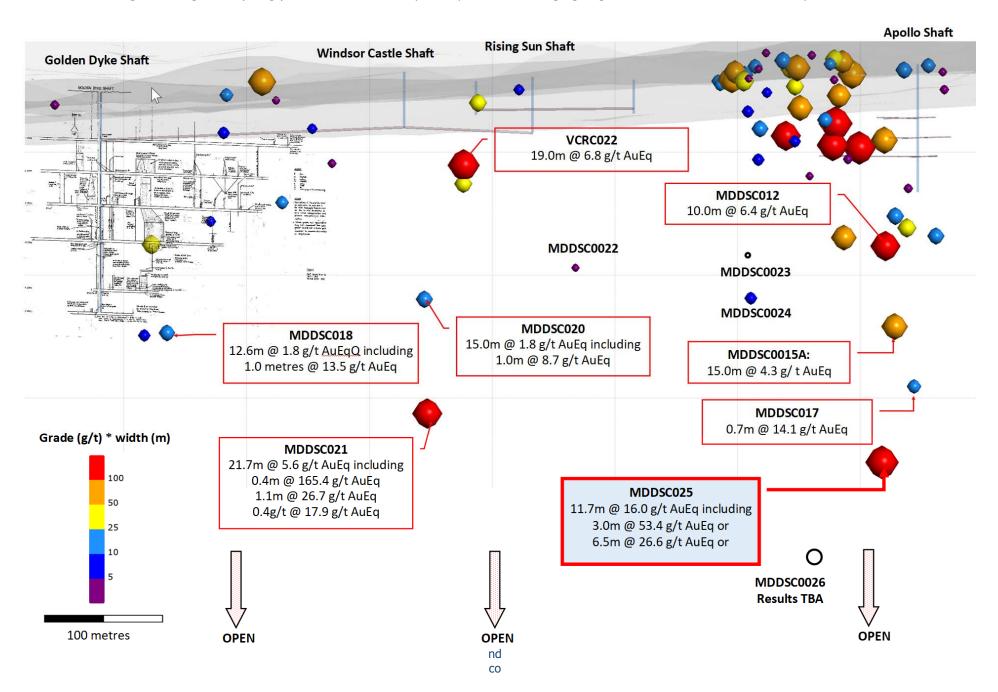


Figure 3: Cross Section of the Apollo Mine area showing Mawson drillhole MDDSC025 reported here.

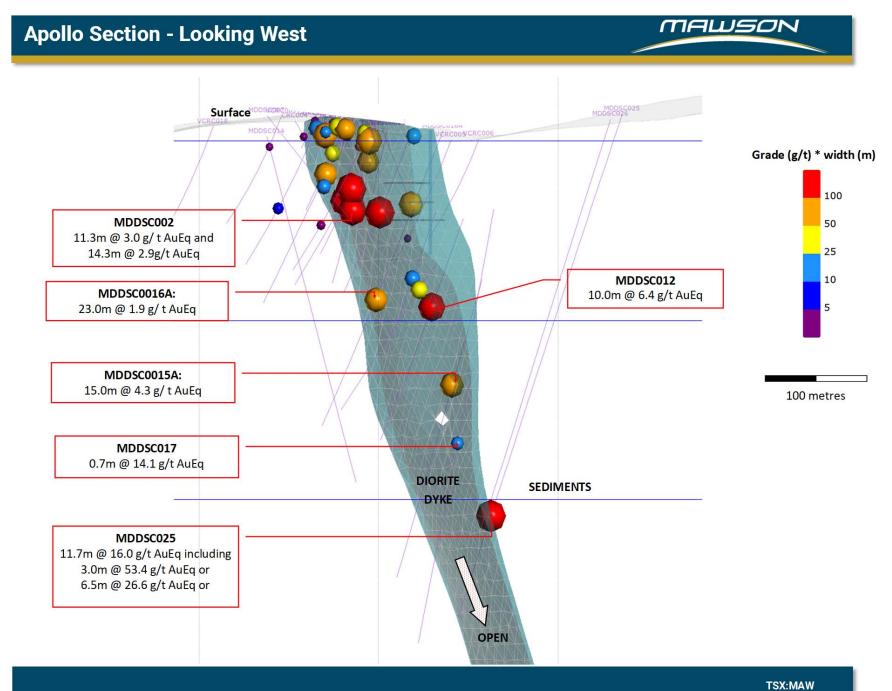


Figure 3: Annotated HQ drill core (63.5mm diameter) showing downhole depth and gold grades from MDDSC0025: 11.7 metres @ 12.4 g/t Au and 3.6 % Sb (16.0 g/t AuEq) from 362.0 metres in hole MDDSC025, including 3.0 metres @ 41.4 g/t Au and 12.0 % Sb (53.4 g/t AuEq) from 364.0 metres or 6.5 metres @ 20.6 g/t Au and 6.0 % Sb (26.6 g/t AuEq) from 362.5 metres and 0.5 metres @ 14.3 g/t Au and 4.4 % Sb (18.7 g/t AuEq) from 370.8 metres.

Table 1: Collar information from Mawson's drilling at the Sunday Creek Project Coordinate Reference System GDA94, Zone 55 (EPSG:28355)

Area	Hole_ID	Easting	Northing	Dip	Azimuth	RL (m)	Depth (m)	Date Reported
Central	MDDSC001	331080	5867769	-55.5	283.3	318	67	October 07, 2020
Central	MDDSC002	331085	5867771	-65.6	241.9	318	150.3	October 27, 2020
Rising Sun	MDDSC003	330776	5867892	-65.2	240.2	295	127.7	October 27, 2020
Golden Dyke	MDDSC004	330637	5867822	-44	240.5	321	280	<u>January 05, 2021</u>
Apollo	MDDSC005	331029	5867798	-45.5	89.6	311	160.1	<u>January 05, 2021</u>
Gladys	MDDSC006	331023	5867799	-39.4	237.1	311	99.6	February 11, 2021
Gladys	MDDSC007	330985	5867712	-42	70	321.5	150.8	<u>February 11, 2021</u>
Gladys	MDDSC008	331044	5867763	-52	253.2	320	99.2	February 11, 2021
Gladys	MDDSC009	331013	5867799	-50	260	311	105.9	February 11, 2021
Gladys	MDDSC010	331033	5867798	-60	214	310.5	151.3	February 11, 2021
Gladys	MDDSC011	331042	5867798	-55	270	310	215.8	March 22, 2021
Apollo	MDDSC012	331172	5867842	-60	252.4	309	262.9	March 22, 2021
Apollo	MDDSC013	331170	5867842	-68	223	309	43.4	Abandoned
Apollo	MDDSC013A	331170	5867842	-68	223	309	270	July 06, 2021
Apollo	MDDSC014	330985	5867712	-75	41.4	303.7	300	July 06, 2021
Apollo	MDDSC015	331191.6	5867860	-65	253	306.7	29.8	Abandoned
Apollo	MDDSC015A	331191.6	5867860	-65	253	306.7	423.2	July 06, 2021
Apollo	MDDSC016	331104.4	5867822	-66	236	308.3	15.74	Abandoned
Apollo	MDDSC016A	331104.4	5867822	-66	236	308.3	252.5	27 October, 2021
Apollo	MDDSC017	331196.4	5867856	-72	260	307.6	450	27 October, 2021
Golden Dyke	MDDSC018	330548	5867891	-55	195	307.6	300	27 October, 2021
Golden Dyke	MDDSC019	330615.8	5867886	-57	195	300.39	196.4	27 October, 2021
Rising Sun	MDDSC020	330755	5868012	-55	195	298.43	200	27 October, 2021
Rising Sun	MDDSC021	330755	5868012	-65	200	298.43	321.4	27 October, 2021
Root Hog	MDDSC022	330875	5868005	-55	200	307.19	282.5	27 October, 2021
Gladys	MDDSC023	330981	5867845	-66	175	297.35	222.6	Here
Gladys	MDDSC024	330981	5867845	-77	175	297.35	306.3	Here
Apollo	MDDSC025	331154	5867964	-72	210	297.35	444.2	Here
Apollo	MDDSC026	331111	5867971	-73	215	318.56	519.2	Here

Note: (1) The true thickness of the mineralized interval is interpreted to be approximately 60-70% of the sampled thickness.

Table 2: Intersections from Mawson's drilling from the Sunday Creek Project. Intersections are reported with a lower cut of 0.3 g/t Au cut over 2.0 metre width, with higher grades reported with a 5 g/t Au cut over 1.0 metre.

Hole_ID	From (m)	To (m)	Width ⁽¹⁾ (m)	Au g/t	Sb %	AuEq g/t
MDDSC001	0.0	15.2	15.2	3.7	0.2	3.9
including	2.0	2.8	0.8	9.4	0.4	9.7
including	6.0	6.2	0.1	15.8	0.1	15.9
including	8.0	8.7	0.7	5.7	0.1	5.8
including	10.0	11.6	1.6	11.3	0.3	11.5
MDDSC001	56.0	56.9	0.9	2.2	0.0	2.2
MDDSC001	64.0	65.4	1.4	0.6	0.1	0.7
MDDSC002	16.0	17.5	1.5	1.2	0.3	1.4
MDDSC002	26.0	26.3	0.3	6.3	0.2	6.4
MDDSC002	39.0	41.0	2.0	1.4	0.0	1.4
MDDSC002	50.0	59.0	9.0	3.2	0.5	3.7
including	54.0	54.3	0.3	82.8	13.8	96.5
MDDSC002	76.0	76.5	0.5	1.0	0.0	1.1
MDDSC002	96.0	96.6	0.6	2.2	0.3	2.5
MDDSC002	109.0	110.1	1.1	21.4	3.3	24.7
MDDSC002	113.0	113.3	0.3	10.6	1.1	11.7
MDDSC002	116.0	130.3	14.3	2.9	0.5	3.3
including	116.0	116.3	0.3	25.6	0.0	25.6
including	117.0	117.4	0.4	18.0	2.8	20.8
including	119.0	119.6	0.5	7.0	7.3	14.3
including	123.0	124.1	1.1	5.2	0.8	6.0
including	128.0	128.2	0.2	7.1	0.0	7.1
MDDSC002	135.0	136.0	1.0	0.6	0.0	0.6
MDDSC002	143.0	144.0	1.0	1.8	0.0	1.8
MDDSC003	72.0	73.5	1.5	3.6	0.3	3.9
including	72.0	72.9	0.9	5.3	0.5	5.7
MDDSC003	76.0	81.5	5.5	1.6	1.4	3.0
including	79.0	79.6	0.6	5.9	10.0	15.8
MDDSC003	84.0	84.9	0.9	1.0	0.0	1.0
MDDSC003	91.0	92.4	1.3	0.4	0.6	1.0
MDDSC003	116.0	119.1	3.1	0.6	0.0	0.6
MDDSC005	15.0	15.3	0.3	0.7	0.0	0.7
MDDSC005	88.0	92.2	4.2	3.4	0.1	3.5
including	89.0	89.2	0.1	7.1	0.7	7.9
MDDSC005	99.0	99.2	0.2	1.3	0.4	1.6
MDDSC005	107.0	112.7	5.7	0.6	0.6	1.2
including	109.0	109.2	0.2	3.0	11.2	14.1
MDDSC005	120.0	135.7	15.7	2.6	1.0	3.6

	124.0	4244	0.4	F2 6	7.5	60.0
including	124.0	124.1	0.1	52.6	7.5	60.0
including	128.0	128.6	0.6	13.0	2.0	15.0
including	131.0	131.4	0.4	8.3	5.1	13.4
including	133.0	134.7	1.7	8.6	4.9	13.5
MDDSC006	29.0	30.0	1.0	2.3	0.0	2.3
MDDSC006	33.0	33.8	0.8	0.9	0.0	0.9
MDDSC006	57.0	57.6	0.6	0.0	4.4	4.4
MDDSC007	76.0	81.8	5.8	2.2	0.4	2.6
MDDSC007	76.0	76.3	0.3	7.8	2.4	10.2
MDDSC007	79.0	79.4	0.4	22.8	3.2	26.0
MDDSC007	85.0	90.4	5.4	0.6	0.0	0.6
MDDSC007	96.0	96.8	0.8	0.6	0.0	0.6
MDDSC008	13.0	14.0	1.0	1.0	0.0	1.0
MDDSC008	26.0	26.9	0.9	1.3	0.0	1.3
MDDSC008	32.0	33.8	1.8	1.2	0.0	1.2
MDDSC008	68.0	68.7	0.7	20.6	5.0	25.6
MDDSC008	95.0	95.2	0.2	8.4	3.9	12.3
MDDSC009	26.0	26.4	0.4	0.8	0.0	0.8
MDDSC009	29.0	30.7	1.7	0.6	0.4	1.0
MDDSC009	51.0	53.0	2.0	0.6	0.0	0.6
MDDSC009	67.0	68.7	1.7	2.5	0.0	2.5
MDDSC009	84.0	85.0	1.0	1.0	0.0	1.0
MDDSC010	41.0	41.6	0.6	20.6	0.0	20.6
MDDSC010	47.0	48.9	1.9	1.0	0.0	1.0
MDDSC010	59.0	59.5	0.5	0.6	0.0	0.6
MDDSC010	70.0	79.0	9.0	4.7	0.1	4.8
including	74.0	76.0	2.0	18.6	0.5	19.1
MDDSC010	82.0	84.3	2.3	0.9	0.0	0.9
MDDSC010	93.0	95.5	2.5	0.9	0.1	1.0
MDDSC010	98.0	101.1	3.1	10.8	1.6	12.4
including	100.0	101.2	1.2	25.7	4.1	29.8
MDDSC010	120.0	121.4	1.4	1.0	0.0	1.0
MDDSC011	55.0	56.0	1.0	0.9	0.0	0.9
MDDSC011	79.0	82.0	3.0	0.4	0.0	0.4
MDDSC011	99.0	101.0	2.0	2.0	0.0	2.0
MDDSC011	184.0	187.8	3.8	0.6	0.0	0.6
MDDSC012	74.0	74.7	0.7	0.9	0.2	1.1
MDDSC012	76.0	78.2	2.2	0.4	0.3	0.7
MDDSC012	141.0	141.6	0.6	0.7	0.1	0.8
MDDSC012	155.0	155.3	0.3	0.2	0.8	1.0
MDDSC012	178.0	180.8	2.8	4.0	0.3	4.3
including	178.0	178.8	0.8	11.4	0.9	12.3

MDDSC012	184.0	189.9	5.9	1.7	0.1	1.8
including	185.0	186.0	1.0	4.3	0.8	5.1
MDDSC012	196.0	200.3	4.3	2.2	0.2	2.4
including	196.0	197.0	1.0	5.9	0.3	6.2
MDDSC012	203.0	213.4	10.4	5.4	1.0	6.4
including	207.0	207.2	0.2	37.3	12.0	49.2
including	209.0	211.2	2.2	15.8	3.3	19.2
MDDSC012	226.0	227.1	1.1	1.4	0.0	1.4
MDDSC013A	111.1	116.3	5.3	3.08	1.13	4.21
including	111.1	111.7	0.6	14.40	9.64	24.00
including	113.5	114.1	0.6	8.39	0.01	8.40
MDDSC013A	125.4	126.4	1.0	0.39	0.00	0.39
MDDSC013A	182.7	183.7	1.0	0.43	0.00	0.43
MDDSC014	8.2	9.2	1.0	0.58	0.00	0.58
MDDSC015A	202.0	204.7	2.7	0.49	0.01	0.50
MDDSC015A	222.0	226.5	4.6	1.62	0.07	1.69
including	222.7	223.3	0.6	5.50	0.34	5.84
MDDSC015A	231.4	246.7	15.3	2.16	2.10	4.25
including	232.3	233.2	0.8	1.11	6.76	7.84
including	238.1	238.6	0.5	6.63	15.30	21.86
including	241.3	244.1	2.8	5.70	5.46	11.14
including	245.6	246.1	0.5	10.10	0.65	10.75
MDDSC015A	259.8	260.6	0.8	0.53	0.01	0.54
MDDSC016A	109.4	132.9	23.5	1.6	0.30	1.9
including	124.7	125.1	0.4	53.3	3.48	56.8
MDDSC016A	157.5	169.4	11.9	0.7	0.50	1.2
including	167.8	168.2	0.4	0.9	12.10	12.9
MDDSC016A	174.6	182.2	7.6	2.2	0.23	2.4
including	177.2	177.8	0.6	4.6	0.75	5.4
MDDSC017	242.7	243.4	0.7	14.1	0.01	14.1
MDDSC018	199.8	212.0	12.2	1.6	0.18	1.8
including	202.3	203.3	1.0	12.5	1.07	13.5
MDDSC019	52.0	53.0	1.0	3.5	0.06	3.5
MDDSC019	151.6	156.0	4.4	0.8	0.02	0.8
MDDSC019	159.0	163.0	4.0	0.9	0.03	1.0
MDDSC020	207.0	222.0	15.0	1.3	0.43	1.8
including	207.0	208.0	1.0	8.4	0.23	8.7
including	216.7	217.4	0.7	2.8	3.46	6.2
MDDSC021	274.7	296.4	21.7	4.7	0.95	5.6
including	277.0	277.4	0.4	145.5	20.00	165.4
including	280.4	281.5	1.1	19.2	7.50	26.7
including	287.4	287.8	0.4	14.7	3.29	17.9

MDDSC021	298.4	299.2	0.8	0.3	0.02	0.3
MDDSC022	194.4	194.7	0.3	0.5	0.00	0.5
MDDSC024	195.0	200.0	5.0	1.1	0.30	1.5
MDDSC025	362.0	373.7	11.7	12.4	3.6	16.0
including	364.0	367.0	3.0	41.4	12.0	53.4
including	370.8	371.3	0.5	14.3	4.4	18.7

Note: (1) The true thickness of the mineralized interval is interpreted to be approximately 60% of the sampled thickness.

Table 3: Individual assay data (Au>0.3 g/t) from drill holes reported in this press release.

Hole number	From	То	Interval	Au g/t	Sb %
MDDSC022	194.4	194.7	0.3	0.5	0.0
MDDSC022	234.1	234.8	0.7	0.3	0.0
MDDSC024	125.3	125.6	0.3	0.5	0.0
MDDSC024	125.6	126	0.4	0.5	0.0
MDDSC024	170.7	171.5	0.8	0.8	0.0
MDDSC024	180.9	181.9	1	0.5	0.0
MDDSC024	183.8	184.2	0.4	0.3	0.0
MDDSC024	190.6	190.9	0.4	0.3	0.0
MDDSC024	190.9	191.3	0.4	0.3	0.0
MDDSC024	191.7	192.2	0.5	0.8	0.0
MDDSC024	195	195.3	0.4	0.7	0.6
MDDSC024	195.9	196.5	0.6	0.5	0.7
MDDSC024	196.5	197	0.6	1.5	1.2
MDDSC024	197	198	1	2.6	0.3
MDDSC024	198	198.9	0.9	1.3	0.0
MDDSC024	198.9	199.9	1	0.4	0.0
MDDSC024	203.9	204.9	1	0.4	0.0
MDDSC024	211.2	211.5	0.3	1.2	0.0
MDDSC025	263	263.8	0.8	0.8	0.0
MDDSC025	279.4	280	0.6	0.3	0.0
MDDSC025	361.3	362	0.8	0.3	0.0
MDDSC025	362	362.5	0.5	0.7	0.0
MDDSC025	362.5	363	0.5	2.6	0.2
MDDSC025	363	364	1	3.5	1.4
MDDSC025	364	364.7	0.7	43.8	10.4
MDDSC025	364.7	365.3	0.6	27.1	4.3
MDDSC025	365.3	365.6	0.3	8.2	6.4
MDDSC025	365.6	366	0.4	54.4	28.8
MDDSC025	366	366.5	0.5	92.5	18.6
MDDSC025	366.5	367	0.6	20.8	8.1
MDDSC025	367	368	1	2.9	0.9
MDDSC025	368	369	1	2	0.3
MDDSC025	369	370	1	0.9	0.4
MDDSC025	370	370.8	0.8	0.7	0.4
MDDSC025	370.8	371.3	0.5	14.3	4.4
MDDSC025	371.3	372.3	1	2	0.3
MDDSC025	373.4	373.7	0.3	2.8	0.1
MDDSC025	392.9	393.7	0.8	0.3	0.2
MDDSC025	433.8	434.3	0.5	0.4	0.0